[1] Cochrane T.: 
On a trigonometric inequality of Vinogradov. J. Number Theory 27 (1987), 9–16.  
MR 0904002 | 
Zbl 0629.10030 
[2] Coppersmith D., Shparlinski I.: 
On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping. J. Cryptology 13 (2000), 339–360.  
MR 1768482 | 
Zbl 1038.94007 
[3] Ding C., Helleseth T.: 
On cyclotomic generator of order $r$. Inform. Process. Lett. 66 (1998), 21–25.  
MR 1626061 | 
Zbl 1078.94511 
[4] Kiltz E., Winterhof A.: 
Polynomial interpolation of cryptographic functions related to Diffie-Hellman and discrete logarithm problem. Discrete Appl. Math. 154 (2006), 326–336.  
MR 2194405 | 
Zbl 1092.94024 
[5] Konyagin S., Lange T., Shparlinski I.: 
Linear complexity of the discrete logarithm. Des. Codes Cryptogr. 28 (2003), 135–146.  
MR 1962801 | 
Zbl 1024.11078 
[6] Lange T., Winterhof A.: 
Polynomial interpolation of the elliptic curve and XTR discrete logarithm. Lecture Notes in Comput. Sci. 2387 (2002), 137–143.  
MR 2064510 | 
Zbl 1077.94518 
[7] Lange T., Winterhof A.: 
Incomplete character sums over finite fields and their application to the interpolation of the discrete logarithm by Boolean functions. Acta Arith. 101 (2002), 223–229.  
MR 1875841 | 
Zbl 0998.11070 
[8] Lange T., Winterhof A.: 
Interpolation of the discrete logarithm in $F_q$ by Boolean functions and by polynomials in several variables modulo a divisor of $q-1$. Discrete Appl. Math. 128 (2003), 193–206.  
MR 1991426 
[9] Meidl W., Winterhof A.: 
Lower bounds on the linear complexity of the discrete logarithm in finite fields. IEEE Trans. Inform. Theory 47 (2001), 2807–2811.  
MR 1872841 | 
Zbl 1032.94004 
[10] Meletiou G. C.: 
Explicit form for the discrete logarithm over the field ${\text GF}(p,k)$. Arch. Math. (Brno) 29 (1993), 25–28.  
MR 1242625 | 
Zbl 0818.11049 
[11] Meletiou G. C.: 
Explicit form for the discrete logarithm over the field ${\text GF}(p,k)$. Bul. Inst. Politeh. Iaşi. Secţ. I. Mat. Mec. Teor. Fiz. 41(45) (1995), 1–4.  
MR 1491193 
[12] Meletiou G. C., Mullen G. L.: 
A note on discrete logarithms in finite fields. Appl. Algebra Engrg. Comm. Comput. 3 (1992), 75–78.  
MR 1325748 | 
Zbl 0749.11055 
[13] Menezes A. J., van Oorschot P. C., Vanstone S. A. : 
Handbook of applied cryptography. CRC Press, Boca Raton, FL 1997.  
MR 1412797 | 
Zbl 0868.94001 
[14] Mullen G. L., White D.: 
A polynomial representation for logarithms in ${\text GF}(q)$. Acta Arith. 47 (1986), 255–261.  
MR 0870668 
[15] Niederreiter H.: 
A short proof for explicit formulas for discrete logarithms in finite fields. Appl. Algebra Engrg. Comm. Comput. 1 (1990), 55–57.  
MR 1325511 | 
Zbl 0726.11079 
[16] Niederreiter H., Winterhof A.: 
Incomplete character sums and polynomial interpolation of the discrete logarithm. Finite Fields Appl. 8 (2002), 184–192.  
MR 1894512 
[17] Risler J.-J.: 
Khovansky’s theorem and complexity theory. Rocky Mountain J. Math. 14 (1984), 851–853.  
MR 0773123 
[18] Risler J.-J.: 
Additive complexity of real polynomials. SIAM J. Comp. 14 (1985), 178–183.  
MR 0774937 
[19] Rojas J. M.: 
Additive complexity and p-adic roots of polynomials. Lecture Notes in Comput. Sci. 2369 (2002), 506–516.  
MR 2041107 
[21] Shparlinski I.: 
Number theoretic methods in cryptography. Complexity lower bounds. Birkhäuser, Basel 1999.  
MR 1707287 | 
Zbl 0912.11057 
[22] Shparlinski I.: 
Cryptographic applications of analytic number theory. Complexity lower bounds and pseudorandomness. Birkhäuser, Basel 2003.  
MR 1954519 
[23] Winterhof A.: 
Some estimates for character sums and applications. Des. Codes Cryptogr. 22 (2001), 123–131.  
MR 1813781 | 
Zbl 0995.11067 
[24] Winterhof A.: 
Incomplete additive character sums and applications. In: Jungnickel, D. and Niederreiter, H. (eds.): Finite fields and applications, 462–474, Springer, Heidelberg 2001.  
MR 1849268 | 
Zbl 1019.11034 
[25] Winterhof A.: 
Polynomial interpolation of the discrete logarithm. Des. Codes Cryptogr. 25 (2002), 63–72.  
MR 1881340 | 
Zbl 1017.11065 
[26] Winterhof A.: 
A note on the linear complexity profile of the discrete logarithm in finite fields. Progress Comp. Sci. Appl. Logic 23 (2004), 359–367.   
MR 2090662 | 
Zbl 1063.11052