[1] Doupovec, M., Kolář, I.: 
Natural affinors on time-dependent Weil bundles. Arch. Math. (Brno) 27 (1991), 205–209. 
MR 1189217[2] Gancarzewicz, J., Kolář, I.: 
Natural affinors on the extended $r$-th order tangent bundles. Rend. Circ. Mat. Palermo (2) Suppl. 30 (1993), 95–100. 
MR 1246623[3] Kolář, I. et al.: 
Natural operations in differential geometry. Springer-Verlag, Berlin 1993. 
MR 1202431[4] Kolář, I., Mikulski, W. M.: 
Contact elements on fibered manifolds. Czechoslovak Math. J. 53(128) (2003), 1017–1030. 
MR 2018847[5] Kolář, I., Modugno M.: 
Torsions of connections on some natural bundles. Differential Geom. Appl. 2 (1992), 1–16. 
MR 1244453[6] Kurek, J.: 
Natural affinors on higher order cotangent bundles. Arch. Math. (Brno) 28 (1992), 175–180. 
MR 1222284[7] Kurek, J., Mikulski, W. M.: 
Some natural operators in linear vector fields. Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 87–95. 
MR 2199593[8] Mikulski, W. M.: 
On the fiber product preserving gauge bundle functors on vector bundles. Ann. Polon. Math. 82.3 (2003), 251–264. 
MR 2040810 | 
Zbl 1126.58300[9] Mikulski, W. M.: 
Natural affinors on $r$-jet prolongation of the tangent bundles. Arch. Math. (Brno) 34(2) (1998), 321–328. 
MR 1645340[10] Mikulski, W. M.: 
Natural affinors on $(J^rT^*)^*$. Arch. Math. (Brno) 36 (2000), 261–267. 
MR 1811170 | 
Zbl 1090.58501[11] Mikulski, W. M.: 
The natural affinors on $\otimes ^kT^{(r)}$. Note Mat. 19(2) (1999), 269–274. 
MR 1816880[12] Mikulski, W. M.: 
The natural affinors on generalized higher order tangent bundles. Rend. Mat. Appl. (7) 21 (2001), 339–349. 
MR 1884952 | 
Zbl 1048.58004[13] Mikulski, W. M.: 
Natural affinors on $(J^{r,s,q}(\cdot ,\mathbf{R}^{1,1})_0)^*$. Comment. Math. Univ. Carolin. 42(4) (2001), 655–663. 
MR 1883375 | 
Zbl 1050.58004[14] Mikulski, W. M.: 
The natural affinors on $(J^rT^{*,a})^*$. Acta Univ. Palack. Olomuc. Fac. Rerum Natur., Math. 40 (2001), 179–184. 
MR 1904693 | 
Zbl 1050.58004[15] Mikulski, W. M.: 
The natural affinors on the $r$-jet prolongations of a vector bundle. Demonstratio Math. XXXVII (3) (2004), 709–717. 
MR 2093550 | 
Zbl 1064.58003[16] Tomáš, J.: 
Natural operators transforming projectable vector fields to product preserving bundles. Rend. Circ. Mat. Palermo (2) Suppl. 59 (1999), 181–187. 
MR 1692269