Previous |  Up |  Next

Article

Keywords:
semigroup variety; band variety; full embedding; $f\!f$-alg-universality; determinacy; $Q$-universality
Summary:
A category $K$ is called $\alpha $-determined if every set of non-isomorphic $K$-objects such that their endomorphism monoids are isomorphic has a cardinality less than $\alpha $. A quasivariety $Q$ is called $Q$-universal if the lattice of all subquasivarieties of any quasivariety of finite type is a homomorphic image of a sublattice of the lattice of all subquasivarieties of $Q$. We say that a variety $V$ is var-relatively alg-universal if there exists a proper subvariety $W$ of $V$ such that homomorphisms of $V$ whose image does not belong to $W$ contains a full subcategory isomorphic to the category of all graphs. A semigroup variety $V$ is nearly $J$-trivial if for every semigroup $S\in V$ any $ J$-class containing a group is a singleton. We prove that for a nearly $J$-trivial variety $V$ the following are equivalent: $V$ is $Q$-universal; $ V$ is var-relatively alg-universal; $V$ is $\alpha $-determined for no cardinal $\alpha $; $V$ contains at least one of the three specific semigroups. Dually, for a nearly $J$-trivial variety $V$ the following are equivalent: $V$ is $3$-determined; $V$ is not var-relatively alg-universal; the lattice of all subquasivarieties of $V$ is finite; $V$ is a subvariety of one of two special finitely generated varieties.
References:
[1] Adams, M. E., Adaricheva, K. V., Dziobiak, W. and A. V. Kravchenko, A. V.: Some open question related to the problem of Birkhoff and Maltsev. Studia Logica 78 (2004), 357–378. MR 2108035
[2] Adams, M. E  and Dziobiak, W.: $Q$-universal quasivarieties of algebras. Proc. Amer. Math. Soc. 120 (1994), 1053–1059. MR 1172942
[3] Adams, M. E  and Dziobiak, W.: Lattices of quasivarieties of $3$-element algebras. J. Algebra 166 (1994), 181–210. MR 1276823
[4] Adams, M. E  and Dziobiak, W.: Finite-to-finite universal quasivarieties are $Q$-universal. Algebra Universalis 46 (2001), 253–283. MR 1835799
[5] Adams, M. E  and Dziobiak, W.: Quasivarieties of idempotent semigroups. Internat. J. Algebra Comput. 13 (2003), 733–752. MR 2028101
[6] Birjukov, A. P.: Varieties of idempotent semigroups. Algebra i Logika 9 (1970), 255–273. (in Russian) MR 0297897
[7] Clifford, A. H. and Preston, G.B.: The Algebraic Theory of Semigroups. AMS, Providence, (vol. 1 1961, vol. 2 1967).
[8] Demlová, M. and Koubek, V.: Endomorphism monoids of bands. Semigroup Forum 38 (1989), 305–329. MR 0982011
[9] Demlová, M. and Koubek, V.: Endomorphism monoids in varieties of bands. Acta Sci. Math. (Szeged) 66 (2000), 477–516. MR 1804205
[10] Demlová, M. and Koubek, V.: Weaker universalities in semigroup varieties. Novi Sad J. Math. 34 (2004), 37–86. MR 2136462
[11] Demlová, M. and Koubek, V.: Weak alg-universality and $Q$-universality of semigroup quasivarieties. Comment. Math. Univ. Carolin. 46 (2005), 257–279. MR 2176891
[12] Dziobiak, W.: On subquasivariety lattices of some varieties related with distributive $p$-algebras. Algebra Universalis 21 (1985), 205–214. MR 0835971 | Zbl 0589.08007
[13] Dziobiak, W.: The subvariety lattice of the variety of distributive double $ p$-algebras. Bull. Austral. Math. Soc. 31 (1985), 377–387. MR 0801597 | Zbl 0579.06012
[14] Fennemore, Ch.: All varieties of bands. Semigroup Forum 1 (1970), 172–179. MR 0271257 | Zbl 0206.30401
[15] Gerhard, J. A.: The lattice of equational classes of idempotent semigroups. J. Algebra 15 (1970), 195–224. MR 0263953 | Zbl 0194.02701
[16] Gerhard, J. A. and Shafaat, A.: Semivarieties of idempotent semigroups. Proc. London Math. Soc. 22 (1971), 667–680. MR 0292967
[17] Goralčík, P. and Koubek, V.: Minimal group–universal varieties of semigroups. Algebra Universalis 21 (1985), 111-122. MR 0835975
[18] Hedrlín, Z. and Lambek, J.: How comprehensive is the category of semigroups?. J. Algebra 11 (1969), 195–212. MR 0237611
[19] Hedrlín, Z. and Pultr, A.: Relations (graphs) with finitely generated semigroups. Monatsh. Math. 68 (1964), 213–217. MR 0168684
[20] Hedrlín, Z. and Pultr, A.: Symmetric relations (undirected graphs) with given semigroups. Monatsh. Math. 69 (1965), 318–322. MR 0188082
[21] Hedrlín, Z. and Sichler, J.: Any boundable binding category contains a proper class of mutually disjoint copies of itself. Algebra Universalis 1 (1971), 97–103. MR 0285580
[22] Koubek, V.: Graphs with given subgraphs represent all categories. Comment. Math. Univ. Carolin. 18 (1977), 115–127. MR 0457276 | Zbl 0355.18006
[23] Koubek, V.: Graphs with given subgraphs represent all categories II. Comment. Math. Univ. Carolin. 19 (1978), 249–264. MR 0498229 | Zbl 0375.18004
[24] Koubek, V. and Radovanská, H.: Algebras determined by their endomorphism monoids. Cahiers Topologie Géom. Différentielle Catég. 35 (1994), 187–225. MR 1295117
[25] Koubek, V. and Sichler, J.: Universal varieties of semigroups. J. Austral. Math. Soc. Ser. A 36 (1984), 143–152. MR 0725742
[26] Koubek, V. and Sichler, J.: Equimorphy in varieties of distributive double $p$-algebras. Czechoslovak Math. J. 48 (1998), 473–544. MR 1637938
[27] Koubek, V. and Sichler, J.: On relatively universality and $Q$-universality. Studia Logica 78 (2004), 279–291. MR 2108030
[28] Pultr, A. and Trnková, V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam, 1980. MR 0563525
[29] Rosický, J.: On example concerning testing categories. Comment. Math. Univ. Carolin. 18 (1977), 71–75. MR 0432730
[30] Sapir, M. V.: Varieties with a finite number of subquasivarieties. Sib. Math. J. 22 (1981), 168–187. MR 0638015 | Zbl 0491.08011
[31] Sapir, M. V.: Varieties with countable number of subquasivarieties. Sib. Math. J. 25 (1984), 148–163. MR 0746951
[32] Sapir, M. V.: The lattice of quasivarieties of semigroups. Algebra Universalis 21 (1985), 172–180. MR 0855737 | Zbl 0599.08014
[33] Schein, B.M.: Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups. Fund. Math. 68 (1970), 31–50. MR 0272686 | Zbl 0197.28902
[34] Schein, B.M.: Bands with isomorphic endomorphism semigroups. J. Algebra 96 (1985), 548–565. MR 0810545 | Zbl 0579.20064
Partner of
EuDML logo