[1] Atici F. M., Gusenov G. Sh.: 
Positive periodic solutions for nonlinear difference equations with periodic coefficients. J. Math. Anal. Appl. 232 (1999), 166–182.  
MR 1683041[2] Atici F. M., Cabada A.: 
Existence and uniqueness results for discrete second order periodic boundary value problems. Comput. Math. Appl. 45 (2003), 1417–1427.  
MR 2000606 | 
Zbl 1057.39008[4] Guo Z., Yu J.: 
The existence of periodic and subharmonic solutions for second order superlinear difference equations. Science in China (Series A) 3 (2003), 226–235.  
MR 2014482[5] Jiang D., O’Regan D., Agarwal R. P.: 
Optimal existence theory for single and multiple positive periodic solutions to functional difference equations. Appl. Math. Lett. 161 (2005), 441–462.  
MR 2112417 | 
Zbl 1068.39009[6] Kocic V. L., Ladas G.: 
Global behivior of nonlinear difference equations of higher order with applications. Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.  
MR 1247956[7] Ma M., Yu J.: 
Existence of multiple positive periodic solutions for nonlinear functional difference equations. J. Math. Anal. Appl. 305 (2005), 483–490.  
MR 2130716 | 
Zbl 1070.39019[8] Mickens R. E.: 
Periodic solutions of second order nonlinear difference equations containing a small parameter-II. Equivalent linearization. J. Franklin Inst. B 320 (1985), 169–174.  
MR 0818865 | 
Zbl 0589.39004[9] Mickens R. E.: 
Periodic solutions of second order nonlinear difference equations containing a small parameter-III. Perturbation theory. J. Franklin Inst. B 321 (1986), 39–47.  
MR 0825907 | 
Zbl 0592.39005[10] Mickens R. E.: 
Periodic solutions of second order nonlinear difference equations containing a small parameter-IV. Multi-discrete time method. J. Franklin Inst. B 324 (1987), 263–271.  
MR 0910641 | 
Zbl 0629.39002[11] Raffoul Y. N.: Positive periodic solutions for scalar and vector nonlinear difference equations. Pan-American J. Math. 9 (1999), 97–111. 
[12] Wang Y., Shi Y.: 
Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions. J. Math. Anal. Appl. 309 (2005), 56–69.  
MR 2154027 | 
Zbl 1083.39019[13] Zeng Z.: 
Existence of positive periodic solutions for a class of nonautonomous difference equations. Electronic J. Differential Equations 3 (2006), 1–18.  
MR 2198916 | 
Zbl 1093.39014[14] Zhang R., Wang Z., Chen Y., Wu J.: 
Periodic solutions of a single species discrete population model with periodic harvest/stock. Comput. Math. Appl. 39 (2000), 77–90.  
MR 1729420 | 
Zbl 0970.92019[15] Zhu L., Li Y.: 
Positive periodic solutions of higher-dimensional functional difference equations with a parameter. J. Math. Anal. Appl. 290 (2004), 654–664.   
MR 2033049 | 
Zbl 1042.39005