[1] Bau Sen Du: 
A chaotic function whose nonwandering set is the Cantor ternary set. Proc. Amer. Math. Soc. 92 (1984), 277-278. 
MR 0754720 | 
Zbl 0592.26007[2] I. Kan: 
A chaotic function possessing a scrambled set of positive Lebesgue measure. Proc. Amer. Math. Soc. 92 (1984), 45-49. 
MR 0749887[3] P. E. Kloeden: 
Chaotic diffeгence equations are dense. Bull. Austral. Math. Soc. 15 (1976), 371-379. 
MR 0432829[5] M. Misiurewicz: 
Chaos almost everywhere. Iteration Theoгy and its Functional Equations. (editor Liedl et al.), Lecture notes in mathematics (Spгingeг 1985). 
MR 0829765[6] M. B. Nathanson: 
Piecewise linear functions with almost all points eventually periodic. Proc. Amer. Math. Soc. 60 (1976), 75-81. 
MR 0417351[7] J. Smítal: 
A chaotic function with some extremal properties. Proc. Amer. Math. Soc. 87 (1983), 54-56. 
MR 0677230[8] J. Smítal: 
A chaotic function with a scrambled set of positive Lebesgue measure. Proc. Amer. Math. Soc. 92 (1984), 50-54. 
MR 0749888