[1] R. Godowski: 
Varieties of orthomodular lattices with a strongly full set of states. Demonstratio Math. 14 (1981), 725-733. 
MR 0663122 | 
Zbl 0483.06007[2] R. Greechie: 
Orthomodular lattices admitting no states. J. Comb. Theory 10 (1971), 119 to 132. 
MR 0274355 | 
Zbl 0219.06007[3] S. Gudder: 
Uniqueness and existence properties of bounded observables. Pacific Journal Math. 19 (1966), 81-93, 578-589. 
MR 0201146 | 
Zbl 0149.23603[4] S. Gudder: 
Axiomatic quantum mechanics and generalized probability theory. Probabilistic Methods in Applied Mathematics, Vol. 2, (A. Bharucha - Reid, ed.), Academic Press, New York, 1970. 
MR 0266552 | 
Zbl 0326.60121[6] S. Gudder K. Ruttimann R. Greechie: 
Measurements, Hilbert space and quantum logics. J. Math. Phys. 23(1982), 2381-86. 
MR 0685708[7] P. Pták V. Rogalewicz: 
Regularly full logics and the uniqueness problem for observables. Ann. Inst. H. Poncaré 38 (1983), 69-74. 
MR 0700701[8] P. Pták V. Rogalewicz: 
Measures on orthomodular partially ordered sets. Journal Pure Applied Algebra 28 (1983), 75-80. 
MR 0692854[9] F. W. Schultz: 
A characterization of state space of orthomodular lattices. J. Comb. Theory A 17 (1974), 317-325. 
MR 0364042[10] V. S. Varadarajan: 
Geometry of Quantum Theory I. Van Nostrand Reinhold, Princeton, New Jersey, 1968. 
MR 0471674