[1] Bergman G.M.: On Jacobson radicals of graded rings. preprint.
[2] Clifford A.H., Preston G.B.: 
The Algebraic Theory of Semigroups. Vol. 1., Math. Surveys of the Amer. Math. Soc. 7 (1961). 
MR 0132791 | 
Zbl 0238.20076[3] Cohen M., Montgomery S.: 
Group graded rings, smash products and group actions. Trans. Amer. Math. Soc. 282 (1984), 237-258. Addendum: Trans. Amer. Math. Soc. 300 (1987), 810-811. 
MR 0728711 | 
Zbl 0533.16001[6] Jespers E.: 
When is the Jacobson radical of a semigroup ring of a commutative semigroup homogeneous?. Commun. Algebra 109 (1987), 549-560. 
MR 0902968 | 
Zbl 0619.20045[7] Jespers E., Krempa J., Puczylowski E.R.: 
On radicals of graded rings. Commun. Algebra 10 (1982), 1849-1854. 
MR 0674695 | 
Zbl 0493.16003[8] Jespers E., Puczylowski E.R.: 
The Jacobson and Brown-McCoy radicals of rings graded by free groups. Commun. Algebra 19 (1991), 551-558. 
MR 1100363 | 
Zbl 0721.16023[9] Jespers E., Wauters P.: 
A description of the Jacobson radical of semigroups rings of commutative semigroup. Group and Semigroup Rings, Johannesburg, 1986, 43-89. 
MR 0860052[10] Kelarev A.V.: 
When is the radical of a band sum of rings homogeneous?. Commun. Algebra 18 (1990), 585-603. 
MR 1047329 | 
Zbl 0697.20049[11] Munn W.D.: 
On commutative semigroup algebras. Math. Proc. Camb. Phil. Soc. 93 (1983), 237-246. 
MR 0691992 | 
Zbl 0528.20053[12] Okninski J.: 
On the radical of semigroup algebras satisfying polynomial identities. Math. Proc. Camb. Phil. Soc. 99 (1986), 45-50. 
MR 0809496 | 
Zbl 0583.20052[13] Okninski J., Wauters P.: 
Radicals of semigroup rings of commutative semigroups. Math. Proc. Camb. Phil. Soc. 99 (1986), 435-445. 
MR 0830356 | 
Zbl 0599.20104[14] Puczylowski E.R.: 
Behaviour of radical properties of rings under some algebraic constructions. Coll. Math. Soc. János Bolyai 38 (1982), 449-480. 
MR 0899123[15] Teply M.L., Turman E.G., Quesada A.: 
On semisimple semigroup rings. Proc. Amer. Math. Soc. 79 (1980), 157-163. 
MR 0565329 | 
Zbl 0445.20043