Article
Keywords:
$DF$-spaces; countably quasibarrelled spaces
Summary:
Let $(E,t)$ be a Hausdorff locally convex space. Either $(E,\sigma (E,E'))$ or \newline $(E',\sigma (E',E))$ is a $DF$-space iff $E$ is of finite dimension (THEOREM). This is the most general solution of the problem studied by Iyahen [2] and Radenovič [3].
References:
                        
[2] Iyahen O., Sunday: 
Some remarks on countably barrelled and countably quasibarrelled spaces. Proc. Edinburgh Math. Soc. 15 (1966), 295-296. 
MR 0226357[3] Radenovič S.: 
Some remarks on the weak topology of locally convex spaces. Publ. de l'Institut Math. 44 (1988), 155-157. 
MR 0995423[5] Schaefer H.: 
Topological vector spaces. Springer-Verlag, New York-Heidelberg-Berlin, 1971. 
MR 0342978 | 
Zbl 0983.46002