Article
Keywords:
free topological groups; function spaces
Summary:
In this paper we give a complete isomorphical classification of free topological groups $FM(X)$ of locally compact zero-dimensional separable metric spaces $X$. From this classification we obtain for locally compact zero-dimensional separable metric spaces $X$ and $Y$ that the free topological groups $FM (X)$ and $FM(Y)$ are isomorphic if and only if $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic.
References:
                        
[1] Arhangel'skiĭ A.V.: 
A survey of $C_p$-theory. Questions and Answers in General Topology 5 (1987) 1-109. 
MR 0909494[2] Baars J., de Groot J.: 
An isomorphical classification of function spaces of zero-dimensional locally compact separable metric spaces. Comment. Math. Univ. Carolinae 29 (1988), 577-595. 
MR 0972840 | 
Zbl 0684.54011[3] Engelking R.: 
On closed images of the space of irrationals. Proc. Amer. Math. Soc. 21 (1969), 583-586. 
MR 0239571 | 
Zbl 0177.25501[4] Graev M.I.: 
Free topological groups. Am. Math. Soc. Transl. (1) 8 (1962), 305-364 (translation from {Svobodnye topologičeskie gruppy}, Izvestiya Akad. Nauk SSSR, Ser. Mat. 12 (1948) 279-324). 
MR 0025474[5] Graev M.I.: 
Teorija topologičeskih grupp I. Uspehi Math. Nauk 5 (1950), 3-56. 
MR 0036245[6] Markov A.A.: 
On free topological groups. Am. Math. Soc. Transl. (1) 8 (1962), 195-272 (translation from {O svobodnyh topologičeskih gruppah}, Izvestiya Akad. Nauk SSSR, Ser. Mat. 9 (1945) 3-64). 
MR 0012301[7] Okunev O.G.: 
A method for constructing examples of $M$-equivalent spaces. Top. and its Appl. 36 (1990), 157-171. 
MR 1068167 | 
Zbl 0707.54007[8] Pavlovskiĭ D.: On spaces of continuous functions. Soviet Math. Dokl. 22 (1980), 34-37.