Article
Keywords:
compactification; mapping-extension
Summary:
The problem whether every topological space $X$ has a compactification $Y$ such that every continuous mapping $f$ from $X$ into a compact space $Z$ has a continuous extension from $Y$ into $Z$ is answered in the negative. For some spaces $X$ such compactifications exist.
References:
                        
[AR] Adámek J., Rosický J.: On injectivity classes in locally presented categories. preprint (1991), (to appear in Trans. Amer. Math. Soc).
[Če] Čech E.: 
Topological spaces. (revised ed. by Z.Frolík, M.Katětov) (Academia Prague 1966). 
MR 0211373[DW] Dow A., Watson S.: 
Universal spaces. preprint (December 1990). 
MR 1056167[En] Engelking R.: Topological spaces. Heldermann Verlag Berlin (1990).
[GH] Giuli E., Hušek M.: 
A diagonal theorem for epireflective subcategories of Top and cowellpoweredness. Ann. di Matem. Pura et Appl. 145 (1986), 337-346. 
MR 0886716[GS] Giuli E., Simon P.: 
On spaces in which every bounded subset is Hausdorff. Topology and its Appl. 37 (1990), 267-274. 
MR 1082937 | 
Zbl 0719.54009[Ha] Harris D.: 
The Wallman compactification as a functor. Gen. Top. and its Appl. 1 (1971), 273-281. 
MR 0292034 | 
Zbl 0224.54010[He] Herrlich H.: 
Almost reflective subcategories of Top. preprint (1991) (to appear in Topology and its Appl.). 
MR 1208677[Hu$_1$] Hušek M.: 
Categorial connections between generalized proximity spaces and compactifications. Contributions to extension theory of topological structures, Proc. Conf. Berlin 1967 (Academia Berlin 1969), 127-132. 
MR 0248730[Hu$_2$] Hušek M.: 
Remarks on reflections. Comment. Math. Univ. Carolinae 7 (1966), 249-259. 
MR 0202800