[1] Alo R., deKorvin A., Roberts R.: 
The optional sampling theorem for convex set valued martingales. J. Reine Angew. Math. 310 (1979), 1-6. 
MR 0546661[2] Artstein Z., Hart S.: 
Law of large numbers for random sets and allocation processes. Math. Oper. Res. 6 (1981), 485-492. 
MR 0703091 | 
Zbl 0524.28015[3] Attouch H.: 
Famille d'opérateurs maximaux monotones et mesurabilité. Ann. Mat. Pura ed Appl. 120 (1979), 35-111. 
MR 0551062[4] Diestel J. Uhl J.: 
Vector Measures. Math. Surveys, vol. 15, AMS, Providence, RI, 1977. 
MR 0453964[5] Dynkin E., Evstigneev I.: 
Regular conditional expectations of correspondences. Theory of Prob. and Appl. 21 (1976), 325-338. 
MR 0430204 | 
Zbl 0367.60002[6] Fetter H.: 
On the continuity of conditional expectations. J. Math. Anal. Appl. 61 (1977), 227-231. 
MR 0455110 | 
Zbl 0415.60003[7] Hanen A., Neveu J.: 
Atomes conditionels d'un espace de probabilité. Acta Math. Hungarica 17 (1966), 443-449. 
MR 0205285[8] Hess C.: 
Measurability and integrability of the weak upper limit of a sequence of multifunctions. J. Math. Anal. Appl. 153 (1990), 206-249. 
MR 1080128 | 
Zbl 0748.47046[9] Hiai F.: 
Radon-Nikodym theorems for set-valued measures. J. Multiv. Anal. 8 (1978), 96-118. 
MR 0583862 | 
Zbl 0384.28006[10] Hiai F., Umegaki H.: 
Integrals, conditional expectations and martingales of multivalued functions. J. Multiv. Anal. 7 (1977), 149-182. 
MR 0507504 | 
Zbl 0368.60006[11] deKorvin A., Kleyle R.: 
A convergence theorem for convex set-valued supermartingales. Stoch. Anal. Appl. 3 (1985), 433-445. 
MR 0808943[12] Luu D.Q.: Quelques resultats de representation des amarts uniforms multivoques. C.R. Acad. Su. Paris 300 (1985), 63-63.
[14] Mosco U.: 
Convergence of convex sets and solutions of variational inequalities. Advances in Math. 3 (1969), 510-585. 
MR 0298508[15] Papageorgiou N.S.: 
On the efficiency and optimality of allocations II. SIAM J. Control Optim. 24 (1986), 452-479. 
MR 0838050 | 
Zbl 0589.90015[16] Papageorgiou N.S.: 
Convergence theorem for Banach space valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10 (1987), 433-442. 
MR 0896595[17] Papageorgiou N.S.: 
On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation. J. Multiv. Anal. 17 (1985), 185-206. 
MR 0808276[18] Papageorgiou N.S.: 
On the theory of Banach space valued multifunctions. Part 2: Set valued martingales and set valued measures. J. Multiv. Anal. 17 (1985), 207-227. 
MR 0808277[19] Papageorgiou N.S.: 
A convergence theorem for set-valued supermartingales in a separable Banach space. Stoch. Anal. Appl. 5 (1988), 405-422. 
MR 0912867[20] Papageorgiou N.S., Kandilakis D.: 
Convergence in approximation and nonsmooth analysis. J. Approx. Theory 49 (1987), 41-54. 
MR 0870548 | 
Zbl 0619.41033[21] Salinetti G. Wets R.: 
On the convergence of sequences of convex sets in finite dimensions. SIAM Review 21 (1979), 18-33. 
MR 0516381[22] Thibault L.: 
Esperances conditionelles d'integrandes semicontinus. Ann. Inst. H. Poincaré Ser. B 17 (1981), 337-350. 
MR 0644351[23] Wagner D.: 
Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859-903. 
MR 0486391 | 
Zbl 0407.28006