| Title:
             | 
On a class of commutative groupoids determined by their associativity triples (English) | 
| Author:
             | 
Drápal, Aleš | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
34 | 
| Issue:
             | 
2 | 
| Year:
             | 
1993 | 
| Pages:
             | 
199-201 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $G = G(\cdot)$ be a commutative groupoid such that $\{(a,b,c) \in G^3$; $a\cdot bc \ne ab\cdot c\} = \{(a,b,c) \in G^3$; $a=b\ne c$ or $ a \ne b =c \}$. Then $G$ is determined uniquely up to isomorphism and if it is finite, then $\operatorname{card}(G) = 2^i$ for an integer $i\ge 0$. (English) | 
| Keyword:
             | 
commutative groupoid | 
| Keyword:
             | 
associative triples | 
| MSC:
             | 
05B15 | 
| MSC:
             | 
05E99 | 
| MSC:
             | 
20L05 | 
| MSC:
             | 
20N02 | 
| idZBL:
             | 
Zbl 0787.20040 | 
| idMR:
             | 
MR1241727 | 
| . | 
| Date available:
             | 
2009-01-08T18:02:28Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/118571 | 
| . | 
| Reference:
             | 
[1] Drápal A., Kepka T.: Sets of associative triples.Europ. J. Combinatorics 6 (1985), 227-231. MR 0818596 | 
| Reference:
             | 
[2] Drápal A.: Groupoids with non-associative triples on the diagonal.Czech. Math. Journal 35 (1985), 555-564. MR 0809042 | 
| . |