Article
Keywords:
$C^{\ast }$-algebra; $C^{\ast }$-bundle; sectional representation
Summary:
We show that if Y is the Hausdorffization of the primitive spectrum of a $C^{\ast }$-algebra $A$ then $A$ is $\ast $-isomorphic to the $C^{\ast }$-algebra of sections vanishing at infinity of the canonical $C^{\ast }$-bundle over $Y$.
References:
                        
[1] Dauns J., Hofmann K.H.: 
Representation of rings by sections. Mem. Amer. Math. Soc. 83 (1968). 
MR 0247487 | 
Zbl 0174.05703[2] Dixmier J.: 
Les $C^{\ast }$-algèbres et leurs representations. Gauthier-Villars, Paris, 1969. 
MR 0246136 | 
Zbl 0288.46055[3] Dupre M.J., Gillette M.R.: 
Banach bundles, Banach modules and automorphisms of $C^{\ast }$- algebras. Research Notes in Math. 92, Pitman Advanced Publishing Program, Boston- London-Melbourne, 1983. 
MR 0721812 | 
Zbl 0536.46048[4] Fell J.M.G.: 
The structure of algebras of operator fields. Acta Math. 106 (1961), 233-280. 
MR 0164248 | 
Zbl 0101.09301[5] Fell J.M.G.: 
An extension of Macley's method to Banach $\ast $-algebraic bundles. Mem. Amer. Math. Soc. 90 (1969). 
MR 0259619[6] Tomiyama J.: 
Topological representations of $C^{\ast }$-algebras. Tohôku Math. J. 14 (1962), 187-204. 
MR 0143053