| Title:
|
The existence of local homeomorphisms of degree $n>1$ on local dendrites (English) |
| Author:
|
Miklos, S. |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
34 |
| Issue:
|
2 |
| Year:
|
1993 |
| Pages:
|
363-366 |
| . |
| Category:
|
math |
| . |
| Summary:
|
In this paper we characterize local dendrites which are the images of themselves under local homeomorphisms of degree $n$ for each positive integer $n$. (English) |
| Keyword:
|
local homeomorphism |
| Keyword:
|
map of degree $n$ |
| Keyword:
|
continuum |
| Keyword:
|
local dendrite |
| Keyword:
|
dendrite |
| Keyword:
|
graph |
| MSC:
|
54C10 |
| MSC:
|
54F15 |
| MSC:
|
54F20 |
| MSC:
|
54F50 |
| idZBL:
|
Zbl 0809.54028 |
| idMR:
|
MR1241745 |
| . |
| Date available:
|
2009-01-08T18:04:04Z |
| Last updated:
|
2012-04-30 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118589 |
| . |
| Reference:
|
[1] Maćkowiak T.: Local homeomorphisms onto tree-like continua.Colloq. Math. 38 (1977), 63-68. MR 0464200 |
| Reference:
|
[2] Miklos S.: Exactly $(n,1)$ mappings onto generalized local dendrites.Topology Appl. 31 (1989), 47-53. Zbl 0667.54013, MR 0984103 |
| Reference:
|
[3] Miklos S.: Local homeomorphisms onto nonunicoherent continua.Period. Math. Hungar. 20 (1989), 305-306. Zbl 0649.54019, MR 1042718 |
| Reference:
|
[4] Rosenholtz I.: Local expansions, derivatives, and fixed points.Fund. Math. 91 (1976), 1-4. Zbl 0326.54031, MR 0410719 |
| . |