Article
Keywords:
neutrix; neutrix limit; neutrix convolution product
Summary:
The commutative neutrix convolution product of the functions $x^r e_-^{\lambda x}$ and $x^s e_+ ^{\mu x}$ is evaluated for $r,s =0,1,2, \ldots$ and all $\lambda, \mu$. Further commutative neutrix convolution products are then deduced.
References:
                        
[1] van der Corput J.G.: 
Introduction to the neutrix calculus. J. Analyse Math. 7 (1959-60), 291-398. 
MR 0124678 | 
Zbl 0097.10503[2] Fisher B.: 
Neutrices and the convolution of distributions. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 17 (1987), 119-135. 
MR 0939303[3] Fisher B., Chen Y.: 
Non-commutative neutrix convolution products of functions. Math. Balkanica, to appear. 
MR 1379246 | 
Zbl 0907.46033[4] Fisher B., Kuan L.C.: 
A commutative neutrix convolution product of distributions. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., to appear. 
MR 1319771 | 
Zbl 0821.46050[5] Fisher B., Özçağ E.: 
A result on the commutative neutrix convolution product of distributions. Doğa, Turkish J. Math. 16 (1992), 33-45. 
MR 1156362[6] Fisher B., Özçağ E.: 
Results on the commutative neutrix convolution product of distributions. Arch. Math. 29 (1993), 105-117. 
MR 1242633