Article
Keywords:
$\Sigma$-space; $G_\delta$-diagonal; $\sigma$-closure-preserving; $\sigma$-cushioned; rectangular cover; \newline orthocompact; metacompact; Fréchet space
Summary:
We give a characterization of a paracompact $\Sigma$-space to have a $G_\delta$-diagonal in terms of three rectangular covers of $X^2\setminus\Delta$. Moreover, we show that a local property and a global property of a space $X$ are given by the orthocompactness of $(X\times\beta X)\setminus\Delta$.
References:
                        
[1] Arhangel'skiĭ A.V., Kombarov A.P.: 
On $\nabla$-normal spaces. Topology and Appl. 35 (1990), 121-126. 
MR 1058792[2] Chaber J., Čoban M., Nagami N.: 
On monotonic generalizations of Moore spaces, Čech-complete spaces, and $p$-spaces. Fund. Math. 83 (1974), 107-119. 
MR 0343244[3] Gruenhage G.: 
Generalized metric spaces. Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 423-501. 
MR 0776629 | 
Zbl 0794.54034[4] Gruenhage G., Pelant J.: 
Analytic spaces and paracompactness of $X^2\setminus\Delta$. Topology and Appl. 28 (1988), 11-15. 
MR 0927277 | 
Zbl 0636.54025[5] Junnila H.J.K.: 
Metacompactness, paracompactness and interior-preserving open covers. Trans. Amer. Math. Soc. 249 (1979), 373-385. 
MR 0525679 | 
Zbl 0404.54017[6] Junnila H.J.K.: 
On submetacompactness. Topology Proc. 3 (1978), 375-405. 
MR 0540503[7] Kombarov A.P.: 
On rectangular covers of $X^2\setminus\Delta$. Comment. Math. Univ. Carolinae 30 (1989), 81-83. 
MR 0995704[9] Yajima Y.: 
A characterization of submetacompactness in terms of products. Proc. Amer. Math. Soc. 112 (1991), 291-296. 
MR 1054165 | 
Zbl 0722.54017[10] Yajima Y.: Subspaces of squares; $X^2\setminus\Delta$ and others. Abstracts of Short Conference of Uniform Mathematics and its Applications, Bern, 1991.