Previous |  Up |  Next


Title: A measure-theoretic characterization of Boolean algebras among orthomodular lattices (English)
Author: Pták, Pavel
Author: Pulmannová, Sylvia
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 1
Year: 1994
Pages: 205-208
Category: math
Summary: We investigate subadditive measures on orthomodular lattices. We show as the main result that an orthomodular lattice has to be distributive (=Boolean) if it possesses a unital set of subadditive probability measures. This result may find an application in the foundation of quantum theories, mathematical logic, or elsewhere. (English)
Keyword: orthomodular lattice
Keyword: subadditive probability measure
MSC: 03G12
MSC: 06C15
MSC: 28E15
MSC: 81P10
idZBL: Zbl 0805.06010
idMR: MR1292596
Date available: 2009-01-08T18:10:00Z
Last updated: 2012-04-30
Stable URL:
Reference: [1] Beran L.: Orthomodular Lattices (Algebraic Approach).Academia, Prague, 1984. Zbl 0558.06008, MR 0785005
Reference: [2] Birkhoff G.: Lattice Theory.2nd edition, Amer. Math. Soc. Colloq. Publ., New York, 1948. Zbl 0537.06001, MR 0029876
Reference: [3] Foulis D.J.: A note on orthomodular lattices.Portugal. Math. 21 (1962), 65-72. Zbl 0106.24302, MR 0148581
Reference: [4] Greechie R.J.: Orthomodular lattices admitting no states.Jour. Comb. Theory 10 (1971), 119-132. Zbl 0219.06007, MR 0274355
Reference: [5] Gudder S.P.: Stochastic Methods in Quantum Mechanics.North-Holland, Amsterdam, 1979. Zbl 0439.46047, MR 0543489
Reference: [6] Kalmbach G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0554.06009, MR 0716496
Reference: [7] Majerník V., Pulmannová S.: Bell inequalities on quantum logics.Jour. Math. Phys. 33 (6) (1992), 2173-2178. MR 1164328
Reference: [8] Müller V.: Jauch-Piron states on concrete quantum logics.Int. Jour. Theor. Phys. 32 (1993), 433-442. MR 1213098
Reference: [9] Pták P.: Exotic logics.Colloquium Math., Vol. LIV (1987), 1-7. MR 0928651
Reference: [10] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht-Boston-London, 1991. MR 1176314
Reference: [11] Riečanová Z.: Topology in a quantum logic induced by a measure.Proc. Conf. Topology and Measure V, Greifswald (1988), 126-130. MR 1029570
Reference: [12] Rüttimann G., Wright J.D.M.: Kalmbach outer measures and appear.
Reference: [13] Sarymsakov T., Ajupov S., Khadzhiev D., Chilin V.: Ordered Algebras (in Russian).Filial AN, Tashkent, 1983.


Files Size Format View
CommentatMathUnivCarolRetro_35-1994-1_20.pdf 166.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo