Article
Keywords:
injective; precovers; preenvelopes; canonical module; Cohen-Macaulay; \newline $n$-Gorenstein; resolvent; resolutions
Summary:
In this paper, we use a characterization of $R$-modules $N$ such that $fd_RN = pd_RN$ to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting $N$ to be the $dth$ local cohomology functor of $R$ with respect to the maximal ideal where $d$ is the Krull dimension of $R$.
References:
                        
[1] Auslander M., Buchweitz R.: 
The homological theory of maximal Cohen-Macaulay approximations. Soc. Math. de France, Memoire 38 (1989), 5-37. 
MR 1044344 | 
Zbl 0697.13005[3] Enochs E., Jenda O.: 
Copure injective resolutions, flat resolvents and dimensions. Comment. Math. Univ. Carolinae 34 (1993), 202-211. 
MR 1241728 | 
Zbl 0780.18006[4] Enochs E., Jenda O.: 
Balanced functors applied to modules. J. Algebra 92 (1985), 303-310. 
MR 0778450 | 
Zbl 0554.18006[5] Foxby H.-B.: 
Isomorphisms between complexes with applications to the homological theory of modules. Math. Scand. 40 (1977), 5-19. 
MR 0447269 | 
Zbl 0356.13004[7] Herzog J., Kunz E.: 
Der Kanonische Modul eines Cohen-Macaulay-Rings. Lecture Notes in Mathematics 238, Springer, 1971. 
MR 0412177 | 
Zbl 0231.13009[8] Ishikawa T.: 
On injective modules and flat modules. Math. Soc. Japan 17 (1965), 291-296. 
MR 0188272 | 
Zbl 0199.07802[9] Jensen C.: 
Les foncteurs dérivées de $\lim _{\leftarrow}$ et leurs applications en théorie des modules. Lecture Notes in Mathematics 254, Springer, 1972. 
MR 0407091[11] Roberts P.: 
Homological invariants of modules over commutative rings. Semin. Math. Super. 15, Presses Univ. Montreal, 1980. 
MR 0569936 | 
Zbl 0467.13007[12] Strooker J.: 
Homological questions in local algebra. London Math. Soc. Lecture Note Series 145, Cambridge Univ. Press, 1990. 
MR 1074178 | 
Zbl 0786.13008[13] Yoshino Y.: 
Cohen-Macaulay modules over Cohen-Macaulay rings. London Math. Soc. Lecture Note Series 146, Cambridge Univ. Press, 1990. 
MR 1079937 | 
Zbl 0745.13003