Article
Keywords:
Lipschitz embeddings; Hilbert's cube
Summary:
In our note, we prove the result that the Hilbert's cube equipped with \newline $l_p-$metrics, $p\ge 1$, cannot be isometrically embedded into $c$.
References:
                        
[1] Aharoni I.: 
Every separable metric space is Lipschitz equivalent to a subset $c_0$. Israel. J. Math. 19 (1974), 284-291. 
MR 0511661[2] Assouad P.: 
Remarques sur un article de Israel Aharoni sur les prolongements Lipschitziens dans $c_0$. Israel. J. Math. 31 (1978), 97-100. 
MR 0511662 | 
Zbl 0387.54003[3] Pelant J.: 
Embeddings into $c_{0}^{+}$. preprint. 
MR 1278027