| Title: | Boundary value problems for higher order ordinary differential equations (English) | 
| Author: | Majorana, Armando | 
| Author: | Marano, Salvatore A. | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 35 | 
| Issue: | 3 | 
| Year: | 1994 | 
| Pages: | 451-466 | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $f : [a,b] \times \Bbb R^{n+1} \rightarrow \Bbb R$ be a Carath'{e}odory's function. Let $ \{t_{h}\} $, with $t_{h} \in [a,b]$, and $\{x_{h}\}$ be two real sequences. In this paper, the family of boundary value problems $$ \cases x^{(k)} = f \left( t,x,x',\ldots ,x^{(n)} \right) \ x^{(i)}(t_{i}) = x_{i} \,, \quad i=0,1, \ldots , k-1 \endcases \qquad (k=n+1,n+2,n+3,\ldots ) $$ is considered. It is proved that these boundary value problems admit at least a solution for each $k \geq \nu$, where $\nu \geq n+1$ is a suitable integer. Some particular cases, obtained by specializing the sequence $\{t_{h}\}$, are pointed out. Similar results are also proved for the Picard problem. (English) | 
| Keyword: | higher order ordinary differential equations | 
| Keyword: | Nicoletti problem | 
| Keyword: | Picard \newline problem | 
| MSC: | 34A12 | 
| MSC: | 34B10 | 
| MSC: | 34B15 | 
| idZBL: | Zbl 0809.34034 | 
| idMR: | MR1307273 | 
| . | 
| Date available: | 2009-01-08T18:12:31Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/118686 | 
| . | 
| Reference: | [1] Abramowitz M., Stegun I.A.: Handbook of Mathematical functions with Formulas, Graphs, and Mathematical Tables.Dover Publ., New York, 1972. MR 0208797 | 
| Reference: | [2] Agarwal R.P.: Boundary Value Problems for Higher Order Differential Equations.World Sci. Publ., Singapore, 1986. Zbl 0921.34021, MR 1021979 | 
| Reference: | [3] Bernfeld S.R., Lakshmikantham V.: An Introduction to Nonlinear Boundary Value Problems.Academic Press, New York, 1974. MR 0445048 | 
| Reference: | [4] Bernstein S.N.: Sur les fonctions régulierèment monotones.Atti Congresso Int. Mat. Bologna 1928, vol. 2 (1930), 267-275. | 
| Reference: | [5] Bernstein S.N.: On some properties of cyclically monotonic functions.Izvestiya Akad. Nauk SSSR, Ser. Mat. 14 (1950), 381-404. MR 0037885 | 
| Reference: | [6] Bonanno G., Marano S.A.: Higher order ordinary differential equations.Differential Integral Equations 6 (1993), 1119-1123. MR 1230485 | 
| Reference: | [7] Miranda C.: Istituzioni di Analisi Funzionale Lineare - I.Unione Matematica Italiana, 1978. | 
| Reference: | [8] Piccinini L.C., Stampacchia G., Vidossich G.: Ordinary Differential Equations in $\Bbb R^n$ (Problems and Methods).Springer-Verlag, New York, 1984. Zbl 1220.68090, MR 0740539 | 
| Reference: | [9] Schoenberg I.J.: On the zeros of successive derivatives of integral functions.Trans. Amer. Math. Soc. 40 (1936), 12-23. MR 1501863 | 
| Reference: | [10] Whittaker J.M.: Interpolatory Function Theory.Stechert-Hafner Service Agency, New York, 1964. MR 0185330 | 
| Reference: | [11] Zwirner G.: Su un problema di valori al contorno per equazioni differenziali ordinarie di ordine $n$.Rend. Sem. Mat. Univ. Padova 12 (1941), 114-122. MR 0017834 | 
| . |