| Title: | $M$-mappings make their images less cellular (English) | 
| Author: | Tkačenko, Michael G. | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 35 | 
| Issue: | 3 | 
| Year: | 1994 | 
| Pages: | 553-563 | 
| . | 
| Category: | math | 
| . | 
| Summary: | We consider $M$-mappings which include continuous mappings of spaces onto topological groups and continuous mappings of topological groups elsewhere. It is proved that if a space $X$ is an image of a product of Lindelöf $\Sigma$-spaces under an $M$-mapping then every regular uncountable cardinal is a weak precaliber for $X$, and hence $ X$ has the Souslin property. An image $X$ of a Lindelöf space under an $M$-mapping satisfies $cel_{\omega}X\le2^{\omega}$. Every $M$-mapping takes a $\Sigma(\aleph_0)$-space to an $\aleph_0$-cellular space. In each of these results, the cellularity of the domain of an $M$-mapping can be arbitrarily large. (English) | 
| Keyword: | $M$-mapping | 
| Keyword: | topological group | 
| Keyword: | Maltsev space | 
| Keyword: | $\aleph_0$-cellularity | 
| MSC: | 54A25 | 
| MSC: | 54C99 | 
| MSC: | 54H11 | 
| idZBL: | Zbl 0840.54002 | 
| idMR: | MR1307283 | 
| . | 
| Date available: | 2009-01-08T18:13:19Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/118696 | 
| . | 
| Reference: | [1] ArhangelskiĭA.V.: Factorization theorems and function spaces: stability and monolithicity.Soviet Math. Dokl. 26 (1982), 177-181. | 
| Reference: | [2] ArhangelskiĭA.V., Ranchin D.V.: On dense subspaces of topological products and properties related with final compactness (in Russian).Vestnik Mosc. Univ. 1982, No.6, 21-28. | 
| Reference: | [3] Engelking R.: On functions defined on cartesian products.Fund. Math. 59 (1966), 221-231. Zbl 0158.41203, MR 0203697 | 
| Reference: | [4] Hušek M.: Productivity of properties of topological groups.Topology Appl. 44 (1992), 189-196. MR 1173257 | 
| Reference: | [5] Juhász I.: Cardinal Functions in Topology.Math. Centrum Tracts 34, Amsterdam, 1971. MR 0340021 | 
| Reference: | [6] Kombarov A.P., Malykhin V.I.: On $\Sigma$-products (in Russian).Dokl. AN SSSR 213 (1973), 774-776. MR 0339073 | 
| Reference: | [7] Maltsev A.I.: To the general theory of algebraic systems (in Russian).Mat. Sb. 35 (1954), 3-20. MR 0065533 | 
| Reference: | [8] Nagami K.: $\Sigma$-spaces.Fund. Math. 65 (1969), 169-192. Zbl 0181.50701, MR 0257963 | 
| Reference: | [9] Pasynkov B.A.: On the relative cellularity of Lindelöf subspaces of topological groups.Topol. Appl., to appear. Zbl 0803.54016, MR 1278026 | 
| Reference: | [10] Tkačenko M.G.: Some results on inverse spectra. I..Comment. Math. Univ. Carolinae 22 (1981), 621-633. MR 0633589 | 
| Reference: | [11] Tkačenko M.G.: On the Souslin property in free topological groups over compacta (in Russian).Matem. Zametki 34 (1983), 601-607. MR 0722229 | 
| Reference: | [12] Tkačenko M.G.: On mappings improving properties of their images (in Russian).Uspekhi Matem. Nauk 48 (1993), 187-188. | 
| Reference: | [13] Tkačenko M.G.: $M$-spaces and the cellularity of spaces.Topology Appl., to appear. | 
| Reference: | [14] Todorčević S.: Remarks on cellularity in products.Compositio Math. 57 (1986), 357-372. MR 0829326 | 
| Reference: | [15] Todorčević S.: Cellularity of topological groups.Handwritten notes. | 
| Reference: | [16] UspenskiĭV.V.: Topological group generated by a Lindelöf $\Sigma$-space has the Souslin property.Soviet Math. Dokl. 26 (1982), 166-169. | 
| Reference: | [17] UspenskiĭV.V.: On continuous images of Lindelöf topological groups (in Russian, translated in English).Dokl. AN SSSR 285 (1985), 824-827. MR 0821360 | 
| Reference: | [18] UspenskiĭV.V.: The Maltsev operation on countably compact spaces.Comment. Math. Univ. Carolinae 30 (1989), 395-402. MR 1014140 | 
| . |