Article
Keywords:
completely regular ordered; strictly completely regular ordered; pairwise completely regular; pairwise regular; $I$-space
Summary:
We construct a completely regular ordered space $(X,{\Cal T},\leq)$ such that $X$ is an $I$-space, the topology $\Cal T$ of $X$ is metrizable and the bitopological space $(X,{\Cal T}^\sharp,{\Cal T}^{\flat})$ is pairwise regular, but not pairwise completely regular. (Here ${\Cal T}^\sharp$ denotes the upper topology and ${\Cal T}^\flat$ the lower topology of $X$.)
References:
                        
[2] Künzi H.P.A.: 
Completely regular ordered spaces. Order 7 (1990), 283-293. 
MR 1113204[3] Künzi H.P.A.: 
Quasi-uniform spaces - eleven years later. Top. Proc. 18 (1993), to appear. 
MR 1305128[4] Lane E.P.: 
Bitopological spaces and quasi-uniform spaces. Proc. London Math. Soc. 17 (1967), 241-256. 
MR 0205221 | 
Zbl 0152.21101[5] Lawson J.D.: 
Order and strongly sober compactifications. in: Topology and Category Theory in Computer Science, ed. G.M. Reed, A.W. Roscoe and R.F. Wachter, Clarendon Press, Oxford, 1991, pp. 179-205. 
MR 1145775 | 
Zbl 0745.54012[7] Priestley H.A.: 
Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 24 (1972), 507-530. 
MR 0300949 | 
Zbl 0323.06011[8] Schwarz F., Weck-Schwarz S.: 
Is every partially ordered space with a completely regular topology already a completely regular partially ordered space?. Math. Nachr. 161 (1993), 199-201. 
MR 1251017