Article
Keywords:
pseudomonotone mappings; integral equations; nonnegative solutions
Summary:
Existence results of nonnegative solutions of asymptotically linear, nonlinear integral equations are studied.
References:
                        
[1] Amann H.: 
Fixed points of asymptotically linear maps in ordered Banach spaces. J. Functional Analysis 14 (1973), 162-171. 
MR 0350527 | 
Zbl 0263.47043[2] Ambrosetti A., Badiale M.: 
The Dual Variational Principle and elliptic problems with discontinuous nonlinearities. J. Math. Anal. Appl. 140 (1989), 363-373. 
MR 1001862 | 
Zbl 0687.35033[3] Askhabov S.N.: 
Integral equations of convolution type with power nonlinearity. Coll. Math. 62 (1991), 49-65. 
MR 1114619 | 
Zbl 0738.45003[4] Berkovits J., Mustonen V.: 
An extension of Leray-Schauder degree and applications to nonlinear wave equations. Diff. Int. Equations 3 (1990), 945-963. 
MR 1059342 | 
Zbl 0724.47024[6] Fečkan M.: 
Critical points of asymptotically quadratic functions. Annales Polon. Math. LXI.1 (1995), 63-76. 
MR 1318318[7] Fečkan M.: 
Ordinary differential equations with discontinuous nonlinearities. Atti Sem. Mat. Fis. Univ. Modena XLI (1993), 431-444. 
MR 1248009[8] Kittilä A.: 
On the topological degree for a class of mappings of monotone type and applications to strongly nonlinear elliptic problems. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 91 (1994). 
MR 1263099[9] Krasnoselskii M.A.: 
Positive Solutions of Operator Equations. Noordhoff Groningen (1964). 
MR 0181881[10] Nečas J.: 
Introduction to the Theory of Nonlinear Elliptic Equations. Teubner Leipzig (1983). 
MR 0731261[11] Okrasiński W.: 
On a non-linear convolution equation occurring in the theory of water percolation. Annal. Polon. Math. 37 (1980), 223-229. 
MR 0587492[12] Okrasiński W.: 
On the existence and uniqueness of nonnegative solutions of certain nonlinear convolution equation. Annal. Polon. Math. 36 (1979), 61-72. 
MR 0529307[13] Petryshyn W.V.: 
Solvability of various boundary value problems for the equation $x''=$ $f(t,x,x',x'')-y$. Pacific J. Math. 122 (1986), 169-195. 
MR 0825230 | 
Zbl 0585.34020[14] Santanulla J.: 
Existence of nonnegative solutions of a semilinear equation at resonance with linear growth. Proc. Amer. Math. Soc. 105 (1989), 963-971. 
MR 0964462