Previous |  Up |  Next


fixed point theorem; spectral radius; integral-functional equation
In the paper [13] we proved a fixed point theorem for an operator $\Cal A$, which satisfies a generalized Lipschitz condition with respect to a linear bounded operator $A$, that is: $$ m(\Cal A x-\Cal A y)\prec Am(x-y). $$ The purpose of this paper is to show that the results obtained in [13], [14] can be extended to a nonlinear operator $A$.
[1] Bainov D.D., Mishev D.P.: Oscillation theory for neutral differential equations with delay. Adam Hilger, Bristol Philadelphia New York, 1991. MR 1147908 | Zbl 0747.34037
[2] Förster K.-H., Nagy B.: On the local spectral radius of a nonnegative element with respect to an irreducible operator. Acta Sci. Math. 55 (1991), 155-166. MR 1124954
[3] Hristova S.G., Bainov D.D.: Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential equations with ``supremum''. J. Math. Anal. Appl. 172 (1993), 339-352. MR 1200990 | Zbl 0772.34047
[4] Krasnoselski M.A. et al.: Näherungsverfahren zur Lösung von Operatorgleichungen. Akademie Verlag, Berlin, 1973. Zbl 0269.65001
[5] Kwapisz M.: On the existence and uniqueness of solutions of a certain integral-functional equation. Ann. Polon. Math. 31 (1975), 23-41. MR 0380329
[6] Myshkis A.D.: On some problems of the theory of differential equations with deviating argument (in Russian). Uspehi Mat. Nauk 32 (1977), 173-202. MR 0492443
[7] Riesz F., Sz.-Nagy B.: Functional analysis. Ungar, New York, 1955. MR 0071727 | Zbl 0732.47001
[8] Waẓewski T.: Sur un procédé de prouver la convergence des approximations successives sans utilisation des séries de comparaison. Bull. Acad. Polon. Sci. 1 (1960), 45-52. MR 0126109
[9] Zabrejko P.P.: The contraction mapping principle in $K$-metric and locally convex spaces (in Russian). Dokl. Akad. Nauk BSSR 34 (1990), 1065-1068. MR 1095667
[10] Zabrejko P.P., Krasnoselski M.A., Stecenko V.Ya.: On estimations of the spectral radius of the linear positive operators (in Russian). Mat. Zametki 1 (1967), 461-470. MR 0208390
[11] Zabrejko P.P., Makarevich T.A.: On some generalization of the Banach-Caccioppoli principle to operators in pseudometric spaces (in Russian). Diff. Uravn. 23 (1987), 1497-1504. MR 0911361
[12] Zeidler E.: Nonlinear functional analysis and its applications I. Springer Verlag, New York Heidelberg Berlin, 1993. MR 0816732 | Zbl 0583.47050
[13] Zima M.: A certain fixed point theorem and its applications to integral-functional equations. Bull. Austral. Math. Soc. 46 (1992), 179-186. MR 1183775 | Zbl 0761.34048
[14] Zima M.: A theorem on the spectral radius of the sum of two operators and its application. Bull. Austral. Math. Soc. 48 (1993), 427-434. MR 1248046 | Zbl 0795.34069
Partner of
EuDML logo