Article
Keywords:
cocycle; special flow; weak mixing
Summary:
Analytic cocycles of type $III_0$ over an irrational rotation are constructed and an example of that type is given, where all corresponding special flows are weakly mixing.
References:
                        
[1] Aaronson J., Hamachi T., Schmidt K.: 
Associated actions and uniqueness of cocycles. to appear in Proc. of Okayama Conference, 1992. 
MR 1402476 | 
Zbl 1008.37003[2] Aaronson J., Lemańczyk M., Volný D.: A salad of cocycles. preprint.
[3] Golodets V.Ya., Sinel'shchikov S.D.: 
Classification and structure of cocycles of amenable ergodic equivalence relations. preprint. 
MR 1272135 | 
Zbl 0821.28010[4] Katok A.B.: 
Constructions in Ergodic Theory. unpublished lecture notes. 
Zbl 1130.37304[5] Kočergin A.W.: 
On the homology of functions over dynamical systems. Dokl. AN SSSR 281 (1976). 
MR 0430211[6] Kwiatkowski J., Lemańczyk M., Rudolph D.: 
On the weak isomorphism of measure-preserving diffeomorphisms. Isr. J. Math. 80 (1992), 33-64. 
MR 1248926[7] Kwiatkowski J., Lemańczyk M., Rudolph D.: 
A class of cocycles having an analytic coboundary modification. Isr. J. Math. 87 (1994), 337-360. 
MR 1286834[8] Moore C.C., Schmidt K.: 
Coboundaries and homomorphisms for non-singular actions and a problem of H. Helson. Proc. London Math. Soc. (3) 40 (1980), 443-475. 
MR 0572015 | 
Zbl 0428.28014[9] Schmidt K.: 
Cocycles of Ergodic Transformation Groups. Lect. Notes in Math. Vol. 1, Mac Millan Co. of India, 1977. 
MR 0578731[10] Volný D.: 
Constructions of smooth and analytic cocycles over irrational circle rotations. Comment. Math. Univ. Carolinae 36.4 (1995), 745-764. 
MR 1378696