[1] Ash R.B.: 
Real Analysis and Probability. Academic Press, New York, 1972. 
MR 0435320[2] Berliocchi H., Lasry J.-M.: 
Intégrandes normales et mesures paramétrées en calcul de variations. Bull. Soc. Math. France 101 (1973), 129-184. 
MR 0344980[3] Burgess J., Maitra A.: 
Nonexistence of measurable optimal selections. Proc. Amer. Math. Soc. 116 (1992), 1101-1106. 
MR 1120505 | 
Zbl 0767.28010[6] Kucia A.: Some counterexamples for Carathéodory functions and multifunctions. submitted to Fund. Math.
[7] Kucia A., Nowak A.: 
On Baire approximations of normal integrands. Comment. Math. Univ. Carolinae 30:2 (1989), 373-376. 
MR 1014136 | 
Zbl 0685.28001[8] Kucia A., Nowak A.: 
Relations among some classes of functions in mathematical programming. Mat. Metody Sots. Nauk 22 (1989), 29-33. 
MR 1111399 | 
Zbl 0742.49009[9] Levin V.L.: 
Measurable selections of multivalued mappings into topological spaces and upper envelopes of Carathéodory integrands (in Russian). Dokl. Akad. Nauk SSSR 252 (1980), 535-539 English transl.: Sov. Math. Dokl. 21 (1980), 771-775. 
MR 0577834[10] Levin V.L.: 
Convex Analysis in Spaces of Measurable Functions and its Applications to Mathematics and Economics (in Russian). Nauka, Moscow, 1985. 
MR 0809179[11] Pappas G.S.: 
An approximation result for normal integrands and applications to relaxed controls theory. J. Math. Anal. Appl. 93 (1983), 132-141. 
MR 0699706 | 
Zbl 0521.49012[12] Rockafellar R.T.: 
Integral functionals, normal integrands and measurable selections. in: Nonlinear Operators and Calculus of Variations (L. Waelbroeck, ed.), Lecture Notes in Mathematics 543, Springer, Berlin, 1976, pp. 157-207. 
MR 0512209 | 
Zbl 0374.49001[13] Schäl M.: 
A selection theorem for optimization problem. Arch. Math. 25 (1974), 219-224. 
MR 0346632[14] Wagner D.H.: 
Survey of measurable selection theorems. SIAM J. Control 15 (1977), 859-903. 
MR 0486391 | 
Zbl 0407.28006[15] Zygmunt W.: Scorza-Dragoni property (in Polish). UMCS, Lublin, 1990.