Article
Keywords:
distribution; delta-function; neutrix; neutrix limit; neutrix product
Summary:
The non-commutative neutrix product of the distributions $\ln x_+$ and $x_+^{-s} $ is proved to exist for $s=1,2, \ldots$ and is evaluated for $s=1,2$. The existence of the non-commutative neutrix product of the distributions $x_+^{-r}$ and $x_+ ^{-s}$ is then deduced for $r,s= 1,2, \ldots$ and evaluated for $r=s=1$.
References:
                        
[1] van der Corput J.G.: 
Introduction to the neutrix calculus. J. Analyse Math. 7 (1959-60), 291-398. 
MR 0124678 | 
Zbl 0097.10503[4] Fisher B.: 
A non-commutative neutrix product of distributions. Math. Nachr. 108 (1982), 117-127. 
Zbl 0522.46025[5] Fisher B.: 
Some results on the non-commutative neutrix product of distributions. Trabajos de Matematica 44, Buenos Aires, 1983. 
Zbl 1171.46031[6] Fisher B., Kiliçman A.: 
The non-commutative neutrix product of the distributions $x_+ ^{-r}$ and $x_- ^{-s}$. Math. Balkanica 8 (2-3) (1994), 251-258. 
MR 1338782[7] Fisher B., Savaş E., Pehlivan S., Özçağ E.: 
Results on the non-commutative neutrix product of distributions. Math. Balkanica 7 (1993), 347-356. 
MR 1269889[9] Kiliçman A., Fisher B.: On the non-commutative neutrix product $(x_+ ^r \ln x_+) \circ x_- ^{-s} $. submitted for publication.
[10] Özçağ E., Fisher B.: 
On defining the distribution $x_+ ^{-r} \ln ^s x_+$. Rostock. Math. Kolloq. 42 (1990), 25-40. 
MR 1116728