Article
Keywords:
compact space; separation property; extension
Summary:
We consider the property of relative compactness of subspaces of Hausdorff spaces. Several examples of relatively compact spaces are given. We prove that the property of being a relatively compact subspace of a Hausdorff spaces is strictly stronger than being a regular space and strictly weaker than being a Tychonoff space.
References:
                        
[AH] Arhangel'skii A.V., Hamdi M.M. Gennedi: Foundations of the theory of relative topological properties. General Topology. Spaces and mappings. MGU Moscow (1989), 3-48.
[En] Engelking R.: General Topology. (1987), PWN Warsawa.
[He] Herrlich H.: 
Ordnugsfähigkeit total-diskontinuierlicher Räume. Math. Ann. 159 (1965), 77-80. 
MR 0182944[Jo] Jones F.B.: 
Hereditary separable, non-completely regular spaces. Topology Conf., Virginia Polytechnic Inst. and State U. 1973, Springer Lecture Notes in Mathematics 375 (1974), 149-152. 
MR 0413044[PW] Porter J.R., Woods R.G.: 
Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag (1988). 
MR 0918341 | 
Zbl 0652.54016[Ra] Ranchin D.B.: 
On compactness modulo ideal. DAN SSSR (1972), 202 761-764. 
MR 0296899