Article
Keywords:
paracompactness (full normality); uniform locales; metrizability
Summary:
We present a direct constructive proof of full normality for a class of spaces (locales) that includes, among others, all metrizable ones.
References:
                        
[4] Pultr A.: 
Notes on an extension of the structure of frame. Discrete Mathematics 108 (1992), 107-114. 
MR 1189833 | 
Zbl 0759.06011[5] Pultr A.: 
Pointless uniformities I. Complete regularity. Comment. Math. Univ. Carolinae 25 (1984), 91-104. 
MR 0749118 | 
Zbl 0543.54023[6] Pultr A.: 
Pointless uniformities II. (Dia)metrization. Comment. Math. Univ. Carolinae 25 (1984), 105-120. 
MR 0749119[7] Pultr A.: 
Remarks on metrizable locales. Proc. 12th Winter School, Suppl. ai Rend. Circ. Mat. Palermo (2) 6 (1984), 247-258. 
MR 0782722 | 
Zbl 0565.54001[8] Pultr A., Úlehla J.: 
Notes on characterization of paracompact frames. Comment. Math. Univ. Carolinae 30.2 (1989), 377-384. 
MR 1014137[9] Stone A.H.: 
Paracompactness and product spaces. Bull. Amer. Math. Soc. 54 (1948), 977-982. 
MR 0026802 | 
Zbl 0032.31403[10] Sun Shu-Hao: 
On paracompact locales and metric locales. Comment. Math. Univ. Carolinae 30 (1989), 101-107. 
MR 0995708