[1] Baboolal D., Banaschewski B.: 
Compactification and local connectedness of frames. J. Pure Appl. Algebra 70 (1991), 3-16. 
MR 1100502 | 
Zbl 0722.54031[2] Banaschewski B.: 
The frame envelope of a $\sigma$-frame. Quaestiones Math. 16.1 (1993), 51-60. 
MR 1217474 | 
Zbl 0779.06009[3] Banaschewski B., Frith J., Gilmour C.: 
On the congruence lattice of a frame. Pacific J. Math. 130.2 (1987), 209-213. 
MR 0914098 | 
Zbl 0637.06006[4] Banaschewski B., Gilmour C.: 
Stone-Čech compactification and dimension theory for regular $\sigma$-frames. J. London Math. Soc. (2) No.127, 39, part 1 (1989), 1-8. 
MR 0989914 | 
Zbl 0675.06005[5] Banaschewski B., Mulvey C.: 
Stone-Čech compactification of locales I. Houston J. of Math. 6.3 (1980), 301-312. 
MR 0597771 | 
Zbl 0473.54026[6] Banaschewski B., Mulvey C.: 
Stone-Čech compactification of locales II. J. Pure Appl. Algebra 33 (1984), 107-122. 
MR 0754950 | 
Zbl 0549.54017[7] Banaschewski B., Pultr A.: 
Paracompactness revisited. Applied Categorical Structures 1 (1993), 181-190. 
MR 1245799 | 
Zbl 0797.54032[8] Gilmour C.: 
Realcompact Alexandroff spaces and regular $\sigma$-frames. PhD Thesis, University of Cape Town, 1981. 
Zbl 0601.54019[9] Gilmour C.: 
Realcompact Alexandroff spaces and regular $\sigma$-frames. Math. Proc. Cambridge Philos. Soc. 96 (1984), 73-79. 
MR 0743702[10] Gordon H.: 
Rings of functions determined by zero-sets. Pacific J. Math. 36 (1971), 133-157. 
MR 0320996 | 
Zbl 0185.38803[11] Johnstone P.T.: 
Stone Spaces. Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982. 
MR 0698074 | 
Zbl 0586.54001[14] Madden J., Vermeer H.: 
Lindelöf locales and realcompactness. Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. 
MR 0830360 | 
Zbl 0603.54021[15] Marcus N.: Realcompactifications of frames. MSc Thesis, University of Cape Town, 1994.
[16] Reynolds G.: 
On the spectrum of a real representable ring. Applications of Sheaves, Springer LNM 753 (1977), 595-611. 
MR 0555563 | 
Zbl 0426.18002[17] Reynolds G.: 
Alexandroff algebras and complete regularity. Proc. Amer. Math. Soc. 76 (1979), 322-326. 
MR 0537098 | 
Zbl 0416.54015[18] Walters J.: Uniform sigma frames and the cozero part of uniform frames. MSc Thesis, University of Cape Town, 1990.
[19] Walters J.: 
Compactifications and uniformities on sigma frames. Comment. Math. Univ. Carolinae 32.1 (1991), 189-198. 
MR 1118301 | 
Zbl 0735.54014