Article
Keywords:
solvability; loop; group
Summary:
We investigate the situation that the inner mapping group of a loop is of order which is a product of two small prime numbers and we show that then the loop is soluble.
References:
                        
[4] Kepka T., Niemenmaa M.: 
On loops with cyclic inner mapping groups. Arch. Math. 60 (1993), 233-236. 
MR 1201636[5] Niemenmaa M.: 
Transversals, commutators and solvability in finite groups. Bollettino U.M.I. (7) 9-A (1995), 203-208. 
MR 1324621 | 
Zbl 0837.20026[6] Niemenmaa M., Kepka T.: 
On multiplication groups of loops. J. Algebra 135 (1990), 112-122. 
MR 1076080 | 
Zbl 0706.20046[7] Niemenmaa M., Kepka T.: 
On connected transversals to abelian subgroups in finite groups. Bull. London Math. Soc. 24 (1992), 343-346. 
MR 1165376 | 
Zbl 0793.20064[8] Niemenmaa M., Vesanen A.: 
On subgroups, transversals and commutators. Groups Galway/St. Andrews, 1993, Vol.2, London Math. Soc. Lecture Notes Series 212, 1995, pp. 476-481. 
MR 1337289 | 
Zbl 0862.20023[9] Vesanen A.: 
On connected transversals in $PSL(2,q)$. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 84, 1992. 
MR 1150782 | 
Zbl 0744.20058[10] Vesanen A.: 
The group $PSL(2,q)$ is not the multiplication group of a loop. Comm. Algebra 22.4 (1994), 1177-1195. 
MR 1261254[11] Vesanen A.: 
Solvable loops and groups. to appear in J. Algebra. 
MR 1379214