[1] Akashi W.Y.: 
Equivalence theorems and coincidence degree for multivalued mappings. Osaka J. Math. 25.1 (1988), 33-47. 
MR 0937185 
[3] Engelking R.: 
General Topology. Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin (1989). 
MR 1039321 | 
Zbl 0684.54001 
[4] Engl H.: 
Random fixed point theorems for multivalued mappings. Pacific J. Math. 76 (1978), 351-360. 
MR 0500323 | 
Zbl 0355.47035 
[5] Fan K.: 
Fixed points and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. 
MR 0047317 
[7] Gaines R.E., Mawhin J.L.: 
Coincidence degree and nonlinear differential equations. Springer-Verlag Lecture Notes No. 568 (1977). 
MR 0637067 | 
Zbl 0339.47031 
[8] Gaines R.E., Peterson J.K.: 
Periodic solutions to differential inclusions. Nonlinear Analysis 5 (1981), 1109-1131. 
MR 0636724 | 
Zbl 0475.34023 
[9] Gilbarg D., Trudinger N.S.: 
Elliptic Partial Differential Equations of Second Order. Springer-Verlag New York (1983). 
MR 0737190 | 
Zbl 0562.35001 
[10] Glicksberg I.: 
A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points. Proc. Amer. Math. Soc. 3 (1952), 170-174. 
MR 0046638 
[12] Lasota A., Opial Z.: 
An application of the Kakutani-Ky Fan Theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. 13 (1965), 781-786. 
MR 0196178 | 
Zbl 0151.10703 
[14] Ma T.W.: Topological degree for set valued compact vector fields in locally convex spaces. Dissertationes Math. 92 (1972), 1-43.
[15] Mawhin J.: 
Equivalence theorems for nonlinear operator-equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Differential Equations 12 (1972), 610-636. 
MR 0328703 | 
Zbl 0244.47049 
[16] Nowak A.: 
Applications of random fixed point theorems in the theory of generalized random differential equations. Bull. Pol. Acad. Sci. 34 (1986), 487-494. 
MR 0874895 | 
Zbl 0617.60059 
[17] Nussbaum R.D.: The fixed point index and fixed point theorems for $k$-set contractions. Doctoral Dissertation, University of Chicago, Chicago, Ill., 1969.
[18] Nussbaum R.D.: 
The fixed point index for condensing maps. Ann. Mat. Pura. Appl. 89 (1971), 217-258. 
MR 0312341 
[19] Petryshyn W.V., Fitzpatrick P.M.: 
A degree theory, fixed point theorems and mapping theorems for multivalued noncompact mappings. Trans. Amer. Math. Soc. 194 (1974), 1-25. 
MR 2478129 | 
Zbl 0297.47049 
[20] Pruszko T.: 
A Coincidence degree for $L$-compact convex-valued mappings and its applications to the Picard problem for orientor fields. Bull. Acad. Pol. Sci. 27 (1979), 895-902. 
MR 0616183 
[21] T. Pruszko: 
Topological degree methods in multivalued boundary value problems. Nonlinear Analysis 5 (1981), 959-973. 
MR 0633011 
[22] Robertson A.P.: 
On measurable selections. Proc. R.S.E. (A) 72 (1972/73), 1-7. 
MR 0399398 
[24] Sadowski B.W.: 
Limit-compact and condensing operators. Russian Math. Surveys 27 (1972), 85-155. 
MR 0428132 
[25] Saint-Beuve M.F.: 
On the existence of von Neumann-Aumann's theorem. J. Functional Analysis 17 (1974), 112-129. 
MR 0374364 
[26] Saks S.: 
Theory of the Integral. Dover, New York (1968). 
MR 0167578 
[27] Tan K.K., Yuan X.Z.: 
On deterministic and random fixed points. Proc. Amer. Math. Soc. 119 849-856 (1993). 
MR 1169051 | 
Zbl 0801.47044 
[28] Tarafdar E., Teo S.K.: 
On the existence of solutions of the equation $Lx \in Nx$ and a coincidence degree theory. J. Austral. Math. Soc. Ser. A. 28 (1979), 139-173. 
MR 0550958 | 
Zbl 0431.47038 
[29] Tarafdar E., Thompson H.B.: 
On the solvability of nonlinear noncompact operator equations. J. Austral. Math. Soc. Ser. A 43 (1987), 103-126. 
MR 0886808 | 
Zbl 0623.47072 
[30] Tarafdar E., Watson P., Yuan X.Z.: Jointly measurable selections of condensing random upper semi-continuous set-valued mappings and its applications to random fixed points. Nonlinear Analysis, T.M.A. (in press), 1996.
[31] Wagner D.H.: 
Survey of measurable selection theorems. SIAM J. Control. Optim. 15 859-903 (1977). 
MR 0486391 | 
Zbl 0407.28006