Article
Keywords:
Boolean algebra; subalgebra lattice; metrizability
Summary:
We prove that a Boolean algebra is countable iff its subalgebra lattice admits a continuous complementation.
References:
                        
[1] Bonnet R.: 
Subalgebras. Chapter 10 in vol. 2 of: J. D. Monk (ed.) {Handbook of Boolean algebras}, North-Holland, Amsterdam, 1989. 
MR 0991598[3] Gruenhage G.: 
Covering properties on $X^2\setminus \Delta$, W-sets, and compact subsets of $\Sigma$-products. Topology and its Applications 17 (1978), 287-304. 
MR 0752278[5] Koppelberg S.: 
General theory of Boolean algebras. vol 1. of: J. D. Monk (ed.) {Handbook of Boolean algebras}, North-Holland, Amsterdam, 1989. 
MR 0991565[6] Remmel J.B.: 
Complementation in the lattice of subalgebras of a Boolean algebra. Algebra Universalis 10 (1980), 48-64. 
MR 0552156 | 
Zbl 0432.06010