Previous |  Up |  Next

Article

Title: Sets of determination for solutions of the Helmholtz equation (English)
Author: Ranošová, Jarmila
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 309-328
.
Category: math
.
Summary: Let $\alpha > 0$, $\lambda = (2\alpha)^{-1/2}$, $S^{n-1}$ be the $(n-1)$-dimensional unit sphere, $\sigma$ be the surface measure on $S^{n-1}$ and $h(x) = \int_{S^{n-1}} e^{\lambda\langle x,y\rangle }\,d\sigma(y)$. We characterize all subsets $M$ of $\Bbb R^n $ such that $$ \inf\limits_{x\in \Bbb R^n}{u(x)\over h(x)} = \inf\limits_{x\in M}{u(x)\over h(x)} $$ for every positive solution $u$ of the Helmholtz equation on $\Bbb R^n$. A closely related problem of representing functions of $L_1(S^{n-1})$ as sums of blocks of the form $ e^{\lambda\langle x_k,.\rangle }/h(x_k)$ corresponding to points of $M$ is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References. (English)
Keyword: Helmholtz equation
Keyword: set of determination
Keyword: decomposition of $L^1$
MSC: 31B10
MSC: 35J05
idZBL: Zbl 0887.35035
idMR: MR1455498
.
Date available: 2009-01-08T18:31:06Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118929
.
Reference: [1] Aikawa H.: Sets of determination for harmonic functions in an NTA domains.J. Math. Soc. Japan, to appear. MR 1376083
Reference: [2] Bauer H.: Harmonische Räume und ihre Potentialtheorie.Springer-Verlag Berlin-Heidelberg-New York (1966). Zbl 0142.38402, MR 0210916
Reference: [3] Bonsall F.F.: Decomposition of functions as sums of elementary functions.Quart J. Math. Oxford (2) 37 (1986), 129-136. MR 0841422
Reference: [4] Bonsall F.F.: Domination of the supremum of a bounded harmonic function by its supremum over a countable subset.Proc. Edinburgh Math. Soc. 30 (1987), 441-477. Zbl 0658.31001, MR 0908454
Reference: [5] Bonsall F.F.: Some dual aspects of the Poisson kernel.Proc. Edinburgh Math. Soc. 33 (1990), 207-232. Zbl 0704.31001, MR 1057750
Reference: [6] Caffarelli L.A., Littman W.: Representation formulas for solutions to $\Delta u - u = 0$ in $\Bbb R^n$.Studies in Partial Differential Equations, Ed. W. Littman, MAA Studies in Mathematics 23, MAA (1982). MR 0716508
Reference: [7] Gardiner S.J.: Sets of determination for harmonic function.Trans. Amer. Math. Soc. 338 (1993), 233-243. MR 1100694
Reference: [8] Korányi A.: A survey of harmonic functions on symmetric spaces.Proc. Symposia Pure Math. XXV, part 1 (1979), 323 -344. MR 0545272
Reference: [9] Korányi A., Taylor J.C.: Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation.Illinois J. Math. 27.1 (1983), 77-93. MR 0684542
Reference: [10] Ranošová J.: Sets of determination for parabolic functions on a half-space.Comment. Math. Univ. Carolinae 35 (1994), 497-513. MR 1307276
Reference: [11] Ranošová J.: Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness.Comment. Math. Univ. Carolinae 37 (1996), 707-723. Zbl 0887.35064, MR 1440703
Reference: [12] Rudin W.: Functional analysis.McGraw-Hill Book Company (1973). Zbl 0253.46001, MR 0365062
Reference: [13] Taylor J.C.: An elementary proof of the theorem of Fatou-Naïm-Doob.1980 Seminar on Harmonic Analysis (Montreal, Que., 1980), CMS Conf. Proc., vol.1, Amer. Math. Soc., Providence, R.I (1981), 153-163. Zbl 0551.31004, MR 0670103
Reference: [14] Watson G.N.: Theory of Bessel functions.2nd ed., Cambridge Univ. Press Cambridge (1944). Zbl 0063.08184, MR 0010746
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_12.pdf 272.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo