Article
Keywords:
vector valued multiparameter pointwise ergodic theorem; Chacon's ergodic theorem; semigroups of operators; norm conditions
Summary:
A continuous multiparameter version of Chacon's vector valued ergodic theorem is proved.
References:
                        
[1] Brunel A., Émilion R.: 
Sur les opérateurs positifs à moyennes bornées. C.R. Acad. Sci. Paris Sér. I Math. 298 (1984), 103-106. 
MR 0741070[2] Chacon R.V.: 
An ergodic theorem for operators satisfying norm conditions. J. Math. Mech. 11 (1962), 165-172. 
MR 0147619 | 
Zbl 0115.33804[3] Dunford N., Schwartz J.T.: 
Linear Operators. Part I: General Theory. Interscience, New York, 1958. 
MR 1009162 | 
Zbl 0635.47001[4] Hasegawa S., Sato R.: 
On $d$-parameter pointwise ergodic theorems in $L_1$. Proc. Amer. Math. Soc. 123 (1995), 3455-3465. 
MR 1249881[5] Hasegawa S., Sato R., Tsurumi S.: 
Vector valued ergodic theorems for a one-parameter semigroup of linear operators. Tôhoku Math. J. 30 (1978), 95-106. 
MR 0467351 | 
Zbl 0377.47008[7] Sato R.: 
Vector valued differentiation theorems for multiparameter additive processes in $L_p$ spaces. submitted for publication. 
Zbl 0915.47012[8] Terrell T.R.: 
Local ergodic theorems for $n$-parameter semigroups of operators. Lecture Notes in Math., vol. 160, Springer, Berlin, 1970, pp.262-278. 
MR 0268357 | 
Zbl 0204.45406