[1] Alas O.T.: 
The Axiom of choice and two particular forms of Tychonoff theorem. Portugal. Math. 28 (1968), 75-76. 
MR 0281600 
[2] Banaschewski B.: Compactification and the axiom of choice. unpublished manuscript, 1979.
[3] Bentley H.L., Herrlich H.: 
Compactness and rings of continuous functions - without the axiom of choice. to appear. 
MR 1722566 | 
Zbl 0986.54029 
[5] Blass A.: 
A model without ultrafilters. Bull. Acad. Sci. Polon., Sér. Sci. Math. Astr. Phys. 25 (1977), 329-331. 
MR 0476510 | 
Zbl 0365.02054 
[6] Comfort W.W.: 
A theorem of Stone-Čech type, and a theorem of Tychonoff type, without the axiom of choice; and their realcompact analogues. Fund. Math. 63 (1988), 97-110. 
MR 0236880 
[7] Good C., Tree I.J.: 
Continuing horrors of topology without choice. Topol. Appl. 63 (1995), 79-90. 
MR 1328621 | 
Zbl 0822.54001 
[8] Goodstein R.L.: 
Existence in Mathematics. in: Logic and Foundations of Mathematics (eds. D. van Dalen et al.), Wolters-Noordhoff Publ. Co., 1968, pp.70-82. 
MR 0247998 | 
Zbl 0162.30901 
[9] Halpern J.D., Lévy A.: 
The Boolean prime ideal theorem does not imply the axiom of choice. Proc. of Symposium Pure Math. of the AMS 13 (1971), Part I, 83-134. 
MR 0284328 
[10] Herrlich H.: 
Compactness and the Axiom of Choice. Appl. Categ. Structures 4 (1996), 1-14. 
MR 1393958 | 
Zbl 0881.54027 
[11] Herrlich H.: 
An effective construction of a free ultrafilter. Papers on Gen. Topol. Appl. (eds. S. Andima et al.), Annals New York Acad Sci. 806 (1996), 201-206. 
MR 1429654 
[12] Herrlich H.: 
The Ascoli Theorem is equivalent to the Boolean Prime Ideal Theorem. to appear. 
MR 1602169 | 
Zbl 0880.54005 
[13] Herrlich H.: The Ascoli Theorem is equivalent to the Axiom of Choice. to appear.
[14] Herrlich H., Steprāns J.: 
Maximal filters, continuity and choice principles. to appear in Quaestiones Math. 20 (1997). 
MR 1625478 
[15] Herrlich H., Strecker G.E.: 
When in $\Bbb N$ Lindelöf?. to appear in Comment. Math. Univ. Carolinae 38 (1997). 
MR 1485075 
[16] Hilbert D.: 
Über das Unendliche. Mathem. Annalen 95 (1926), 161-190. 
MR 1512272 
[17] Jaegermann M.: 
The Axiom of Choice and two definitions of continuity. Bull. Acad. Polon. Sci, Sér. Sci, Math., Astr. et Phys. 13 (1965), 699-704. 
MR 0195711 | 
Zbl 0252.02059 
[20] Jensen R.B.: Independence of the Axiom of Dependent Choices from the Countable Axiom of Choice. J. Symb. Logic 31 (1966), 294.
[21] Kelley J.L.: 
The Tychonoff product theorem implies the axiom of choice. Fund. Math. 37 (1950), 75-76. 
MR 0039982 | 
Zbl 0039.28202 
[22] Loś J., Ryll-Nardzewski C.: 
Effectiveness of the representation theory for Boolean algebras. Fund. Math. 41 (1955), 49-56. 
MR 0065527 
[24] Moore G.H.: 
Zermelo's Axiom of Choice. Its Origins, Developments and Influence. Springer, New York, 1982. 
MR 0679315 
[25] Mycielski J.: 
Two remarks on Tychonoff's product theorem. Bull. Acad. Polon. Sci. Sér. Sci. Math., Astr. Phys. 12 (1964), 439-441. 
MR 0215731 | 
Zbl 0138.17703 
[26] Pincus D.: 
Adding Dependent Choice to the Boolean Prime Ideal Theorem. Logic Colloq. 76 (1977), 547-565. 
MR 0480027 
[27] Rubin H., Rubin J.E.: 
Equivalents of the Axiom of Choice II. North Holland, Amsterdam, 1985. 
MR 0798475 
[28] Rubin H., Scott D.: Some topological theorems equivalent to the Boolean prime ideal theorem. Bull. Amer. Math. Soc. 60 (1954), 389.
[29] Sierpiñski W.: Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne. Compt. Rendus Hebdomadaires des Sēances de l'Academie des Sciences, Paris 193 (1916), 688-691.
[30] Sierpiñski W.: L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse. Bull. Acad. Sci. Cracovie, Cl. Sci. Math., Sér. A (1918), 97-152.
[31] Douwen E.K.: 
Horrors of topology without AC: a nonnormal orderable space. Proc. Amer. Math. Soc. 95 (1985), 101-105. 
MR 0796455 | 
Zbl 0574.03039 
[32] Ward L.E.: 
A weak Tychonoff theorem and the axiom of choice. Proc. Amer. Math. Soc. 13 (1962), 757-758. 
MR 0186537 | 
Zbl 0112.14301