Article
Keywords:
Noetherian type; rank weight
Summary:
The Noetherian type of topological spaces is introduced. Connections between the Noetherian type and other cardinal functions of topological spaces are obtained.
References:
                        
[1] Arhangel'skii A.V.: 
On bicompacta hereditarily satisfying the Souslin condition. Tightness and free sequences. Soviet Math. Dokl. 12 (1971), 1253-1257. 
MR 0119188[2] Bir'ukov P.A.: 
Ranks of families of sets and properties of topological spaces (in Russian). DAN SSSR 4[257] (1981), 777-779. 
MR 0612564[3] Gruenhage G., Nyikos P.: 
Spaces with bases of countable rank. Gen.Top. and Appl. 8 (1978), 233-257. 
MR 0494007 | 
Zbl 0412.54034[4] Malyhin V.I.: On Noetherian spaces (in Russian). Seminar of Gen. Topology, Moscow University, 1981 pp.51-58.
[5] Peregudov S.A.: On $\sqcap$-uniform bases and $\pi$-bases. Soviet Math. Dokl. 17 (1976), 1055-1059.
[6] Peregudov S.A., Shapirovskii B.E.: A class of compact spaces. Soviet Math. Dokl. 17 (1976), 1296-1300.
[7] Shapirovskii B.E.: 
On $\pi$-character and $\pi$-weight of bicompact (in Russian). DAN SSSR 4[223] (1975), 799-802. 
MR 0410632