Article
Keywords:
$H$-spaces; generalized games; Nash equilibria; $H$-convexity; open lower sections; fixed points
Summary:
We show that a recent existence result for the Nash equilibria of generalized games with strategy sets in $H$-spaces is false. We prove that it becomes true if we assume, in addition, that the feasible set of the game (the set of all feasible multistrategies) is closed.
References:
                        
[3] Bardaro C., Ceppitelli R.: 
Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities. J. Math. Anal. Appl. 132 (1988), 484-490. 
MR 0943521 | 
Zbl 0667.49016[4] Bardaro C., Ceppitelli R.: 
Applications of the generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities. J. Math. Anal. Appl. 137 (1989), 46-58. 
MR 0981922[5] Bardaro C., Ceppitelli R.: 
Fixed point theorems and vector-valued minimax theorems. J. Math. Anal. Appl. 146 (1990), 363-373. 
MR 1043106 | 
Zbl 0698.49011[6] Cubiotti P.: 
Existence of solutions for lower semicontinuous quasi-equilibrium problems. Comput. Math. Applic. 30 (12) (1995), 11-22. 
MR 1360323 | 
Zbl 0844.90094[7] Harker P.T.: 
Generalized Nash games and quasi-variational inequalities. European J. Oper. Res. 54 (1991), 81-94. 
Zbl 0754.90070[8] Huang Y.: 
Fixed point theorems with an application in generalized games. J. Math. Anal. Appl. 186 (1994), 634-642. 
MR 1293845 | 
Zbl 0814.54029[9] Klein E., Thompson A.C.: 
Theory of Correspondences. John Wiley and Sons, New York, 1984. 
MR 0752692 | 
Zbl 0556.28012[10] Tian G., Zhou J.: 
The Maximum theorem and the existence of Nash equilibria of (generalized) games without lower semicontinuities. J. Math. Anal. Appl. 166 (1992), 351-364. 
MR 1160931