Article
Keywords:
prime ring; semiprime ring; derivation; Jordan derivation; left (right) centralizer; left (right) Jordan centralizer
Summary:
The purpose of this paper is to prove the following result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping, such that $2T(x^2)=T(x)x+xT(x)$ holds for all $x\in R$. In this case $T$ is left and right centralizer.
References:
                        
[1] Brešar M., Vukman J.: 
Jordan derivations on prime rings. Bull. Austral. Math. Soc. 37 (1988), 321-323. 
MR 0943433[2] Brešar M.: 
Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), 1003-1006. 
MR 0929422[3] Cusak J.: 
Jordan derivations on rings. Proc. Amer. Math. Soc. 53 (1975), 321-324. 
MR 0399182[4] Herstein I.N.: 
Jordan derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1104-1110. 
MR 0095864[5] Herstein I.N.: 
Rings with involution. Chicago Lectures in Math., Univ. of Chicago Press, Chicago, London, 1976. 
MR 0442017 | 
Zbl 0495.16007[6] Posner E.: 
Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093-1100. 
MR 0095863[7] Vukman J.: 
Centralizers in prime and semiprime rings. Comment. Math. Univ. Carolinae 38 (1997), 231-240. 
MR 1455489[8] Zalar B.: 
On centralizers of semiprime rings. Comment. Math. Univ. Carolinae 32 (1991), 609-614. 
MR 1159807 | 
Zbl 0746.16011