[1] Ahmad S., Lazer A., Paul J.: 
Elementary critical point theory and perturbation of elliptic boundary value problems at resonance. Indiana Univ. Math. J. 25 (1976), 933-944. 
MR 0427825[2] Ambrosetti A., Mancini G.: 
Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue. J. Diff. Equations 28 (1978), 220-245. 
MR 0492839 | 
Zbl 0393.35032[3] Anane A.: Etude des valeurs propers et la resonance pour le operateur P-Laplacian. Ph.D. Thesis, Univ. Bruxelles, 1988.
[4] Bartolo P., Benci V., Fortunato D.: 
Abstract critical point Theorems and applications to some nonlinear problems with strong resonance. Nonlinear Analysis T.M.A. 7 9 (1983), 981-1012. 
MR 0713209 | 
Zbl 0522.58012[5] Berestycki H., Defigueiredo D.: 
Double resonance in semilinear elliptic problems. Comm. Partial Diff. Equations 6 91-120 (1981). 
MR 0597753[6] Brown K.J.: 
Spatially inhomogeneous steady-state solutions for systems of equations describing interacting populations. J. Math. Anal. Appl. 95 (1983), 251-264. 
MR 0710432 | 
Zbl 0518.92017[7] Capozzi A., Lupo D., Solimini S.: 
On the existence of a nontrivial solution to nonlinear problem at resonance. Nonlinear Analysis T.M.A. 13 2 151-163 (1989). 
MR 0979038[8] Cesari L., Kannan R.: 
Qualitative study of a class of nonlinear boundary value problems at resonance. J. Diff. Equations 56 63-81 (1985). 
MR 0772121 | 
Zbl 0554.34009[9] Chiappinelli R., Mawhin J., Nugari R.: 
Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities. Nonlinear Analysis T.M.A, in press. 
Zbl 0780.35038[11] Costa D., Magalh aes: 
A variational approach to subquadratic perturbations of elliptic systems. J. Diff. Equations 111 1 103-122 (1994). 
MR 1280617[12] De Figueiredo D., Chiappinelli R.: 
Bifurcation from infinity and multiple solutions for an elliptic system. Differential and Integral Equations 6 4 (1993), 757-771. 
MR 1222299 | 
Zbl 0784.35008[13] De Figueiredo D., Gossez J.: 
Resonance below the first eigenvalue for a semilinear elliptic problem. Math. Ann. 281 589-610 (1988). 
MR 0958261[14] De Figueiredo D., Mitidieri E.: 
A maximum principle for an elliptic system and applications to semilinear problems. Siam. J. Math. Anal. 17 (1986), 836-849. 
MR 0846392 | 
Zbl 0608.35022[15] Gossez J.: Some nonlinear differential equations at resonance at first eigenvalue. Conf. Sem. Mat. Univ Bari 167 355-389 (1979).
[16] Hernández J.: 
Maximum Principles and Decoupling for Positive Solutions of Reaction-Diffusion Systems. Oxford University Press, K.J. Brown and A. Lacey eds, 1990, pp.199-224. 
MR 1086647[17] Iannacci R., Nkashama M.: 
Nonlinear boundary value problems at resonance. Nonlinear Analysis T.M.A. 11 455-473 (1987). 
MR 0887655 | 
Zbl 0676.35023[18] Iannacci R., Nkashama M.: 
Nonlinear second order elliptic partial differential equations at resonance. Report 87-12, Memphis State University, 1987. 
Zbl 0686.35045[19] Krasnosels'kii M., Zabreico F.: 
Geometrical Methods of Nonlinear Analysis. Springer Verlag (1984). 
MR 0736839[20] Landesman E., Lazer A.: 
Nonlinear perturbation of elliptic boundary value problems at resonance. J. Math. Mech. 19 609-623 (1970). 
MR 0267269[21] Lazer A., McKenna P.J.: 
On steady-state solutions of a system of reaction-diffusion equations from biology. Nonlinear Analysis T.M.A. 6 (1982), 523-530. 
MR 0664014 | 
Zbl 0488.35039[22] Lupo D., Solimini S.: 
A note on a resonance problem. Proc. Royal Soc. Edinburgh 102 A 1-7 (1986). 
MR 0837156 | 
Zbl 0593.35036[23] Mawhin J.: 
Bifurcation from infinity and nonlinear boundary value problems, in ordinary and partial differential equations. vol. II, Sleeman and Jarvis eds, Longman, Ifarlow, 1989, pp.119-129. 
MR 1031727[24] Mawhin J., Schmitt K.: 
Landesman-Lazer type problems at an eigenvalue of odd multiplicity. Results in Math. 14 (1988), 138-146. 
MR 0956010 | 
Zbl 0780.35043[25] Mawhin J., Schmitt K.: 
Nonlinear eigenvalue problems with the parameter near resonance. Ann. Polon. Math. 51 (1990), 241-248. 
MR 1093994 | 
Zbl 0724.34025[26] Omari P., Zanolin F.: 
A note on nonlinear oscillations at resonance. Acta Math. Sinica 3 351-361 (1987). 
MR 0930765 | 
Zbl 0648.34040[27] Rabinowitz P.: 
Minimax methods in critical point theory with applications to differential equations. CBMS 65 Regional Conference Series in Math, A.M.S., 1986. 
MR 0845785 | 
Zbl 0609.58002[28] Rothe F.: 
Global existence of branches of stationary solutions for a system of reaction-diffusion equations from biology. Nonlinear Analysis T.M.A. 5 (1981), 487-498. 
MR 0613057 | 
Zbl 0471.35031[29] Schechter M.: 
Nonlinear elliptic boundary value problems at resonance. Nonlinear Analysis T.M.A. 14 10 889-903 (1990). 
MR 1055536 | 
Zbl 0708.35033[31] Solimini S.: 
On the solvability of some elliptic partial differential equations with the linear part at resonance. J. Math. Anal. Appl. 117 138-152 (1986). 
MR 0843010 | 
Zbl 0634.35030[32] Vargas C., Zuluaga M.: 
On a nonlinear Dirichlet problem type at resonance and bifurcation. Partial Differential Equations Pitmann Research Notes in Math. Series 273, pp.248-252 (1992). 
Zbl 0795.35035[33] Vargas C., Zuluaga M.: 
A nonlinear elliptic problem at resonance with a nonsimple eigenvalue. Nonlinear Analysis T.M.A. (1996), 711-721. 
MR 1399070 | 
Zbl 0861.35030[34] Zuluaga M.: 
A nonlinear elliptic system at resonance. Dynamic Systems and Applications 3 4 501-510 (1994). 
MR 1304129 | 
Zbl 0811.35037[35] Zuluaga M.: 
Nonzero solutions of a nonlinear elliptic system at resonance. Nonlinear Analysis T.M.A 31 3/4 445-454 (1996). 
MR 1487555