[1] Bérard Bergery L.: 
Les espaces homogènes riemanniens de dimension $4$. in Géométrie riemannienne en dimension $4$ (Séminaire A.Besse) Cedic, Paris (1981), pp.40-60. 
MR 0769130[2] Calvaruso G., Vanhecke L.: 
Special ball-homogeneous spaces. Z. Anal. Anwendungen 16 (1997), 789-800. 
MR 1615680 | 
Zbl 0892.53023[3] Calvaruso G., Vanhecke L.: 
Ball-homogeneous spaces. Proc. Workshop on Recent Topics in Differential Geometry, Santiago de Compostela (1997). 
Zbl 0892.53023[4] Ishihara S.: 
Homogeneous Riemannian spaces of four dimensions. J. Math. Soc. Japan 7 (1955), 345-370. 
MR 0082717 | 
Zbl 0067.39602[5] Jensen G.R.: 
Homogeneous Einstein spaces of dimension four. J. Differential Geom. 3 (1969), 309-349. 
MR 0261487 | 
Zbl 0194.53203[6] Kiyota Y.: Singer invariants of Riemannian homogeneous spaces. Master Thesis, Ochanomizu University (in Japanese) (1998).
[7] Kowalski O.: 
A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolinae 30 (1989), 85-88. 
MR 0995705 | 
Zbl 0679.53043[8] Kowalski O., Prüfer F.: 
Curvature tensors in dimension four which do not belong to any curvature homogeneous space. Arch. Math. 30 (1994), 45-57. 
MR 1282112[9] Kowalski O., Tricerri F., Vanhecke L.: 
Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl. 71 (1992), 471-501. 
MR 1193605 | 
Zbl 0836.53029[10] Lastaria F.G.: Metriche omogenee con la stessa curvatura. Tesi di dottorato di ricerca, University of Milano (1989).
[11] Lastaria F.G.: 
Homogeneous metrics with the same curvature. Simon Stevin 65 (1991), 267-281. 
MR 1162498 | 
Zbl 0762.53034[12] Nicolodi L., Tricerri F.: 
On two theorems of I.M. Singer about homogeneous spaces. Ann. Global Anal. Geom. 8 (1990), 193-209. 
MR 1088511 | 
Zbl 0676.53058[13] Sekigawa K., Suga H., Vanhecke L.: 
Curvature homogeneity for four-dimensional manifolds. J. Korean Math. Soc. 32 (1995), 93-101. 
MR 1321091 | 
Zbl 0832.53031[14] Singer I.M.: 
Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697. 
MR 0131248 | 
Zbl 0171.42503[15] Takagi H.: 
Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. J. 27 (1975), 103-110. 
MR 0442852 | 
Zbl 0323.53037