| Title:
             | 
BGG sequences on spheres (English) | 
| Author:
             | 
Somberg, Petr | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
41 | 
| Issue:
             | 
3 | 
| Year:
             | 
2000 | 
| Pages:
             | 
509-527 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
BGG sequences on flat homogeneous spaces are analyzed from the point of view of decomposition of appropriate representation spaces on irreducible parts with respect to a maximal compact subgroup, the so called $K$-types. In particular, the kernels and images of all standard invariant differential operators (including the higher spin analogs of the basic twistor operator), i.e. operators appearing in BGG sequences, are described. (English) | 
| Keyword:
             | 
BGG sequences | 
| Keyword:
             | 
invariant differential operators | 
| Keyword:
             | 
branching rules | 
| Keyword:
             | 
$K$-types | 
| Keyword:
             | 
complexes | 
| Keyword:
             | 
homogeneous spaces | 
| MSC:
             | 
22E30 | 
| MSC:
             | 
22E46 | 
| MSC:
             | 
35P15 | 
| MSC:
             | 
43A85 | 
| idZBL:
             | 
Zbl 1037.43016 | 
| idMR:
             | 
MR1795082 | 
| . | 
| Date available:
             | 
2009-01-08T19:04:42Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/119186 | 
| . | 
| Reference:
             | 
[1] Baston R.J.: Almost Hermitean Symmetric Manifolds I. Local twistor theory.Duke Math. J. 63 1 (1991). MR 1106939 | 
| Reference:
             | 
[2] Baston R.J.: Almost Hermitean Symmetric manifolds II. Differential invariants.Duke Math. J. . 63 1 (1991). MR 1106940 | 
| Reference:
             | 
[3] Baston R.J., Eastwood M.G.: The Penrose Transform - its Interaction with Representation Theory.Oxford University Press, New York, 1989. Zbl 0726.58004, MR 1038279 | 
| Reference:
             | 
[4] Bernstein I.N., Gelfand I.M., Gelfand S.I.: Structure of representations generated by vectors of highest weight.Funct. Anal. Appl. 5 (1971), 1-8. MR 0291204 | 
| Reference:
             | 
[5] Branson T.: Stein-Weiss operators and ellipticity.J. Funct. Anal. 151 (1997), 334-383. Zbl 0904.58054, MR 1491546 | 
| Reference:
             | 
[6] Branson T.: Spectra of self-gradients on spheres, preprint, University of Iowa, August 1998.. MR 1718236 | 
| Reference:
             | 
[7] Branson T., Olafsson G., Ørsted B.: Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup.J. Funct. Anal. 135 (1996), 163-205. MR 1367629 | 
| Reference:
             | 
[8] Bureš J.: Special invariant operators I..ESI preprint 192 (1995). MR 1396170 | 
| Reference:
             | 
[9] Čap A., Slovák J., Souček V.: Invariant operators with almost hermitean symmetric structures, III. Standard operators.to be published. | 
| Reference:
             | 
[10] Čap A., Slovák J., Souček V.: Bernstein-Gelfand-Gelfand sequences.to be published. | 
| Reference:
             | 
[11] Delanghe R., Souček V.: On the structure of spinor-valued differential forms.Complex Variables 18 (1992), 223-236. MR 1157930 | 
| Reference:
             | 
[12] Eastwood M.G.: On the weights of conformally invariant operators.Twistor Newsl. 24 (1987), 20-23. | 
| Reference:
             | 
[13] Eastwood M.G.: Notes on conformal differential geometry.Proc. of Winter School, Srní, in Suppl. Rend. Circ. Mat. di Palermo, ser. II, 43 (1996), 57-76. Zbl 0911.53020, MR 1463509 | 
| Reference:
             | 
[14] Fegan H.D.: Conformally invariant first order differential operators.Quart. J. Math. 27 (1976), 371-378. Zbl 0334.58016, MR 0482879 | 
| Reference:
             | 
[15] Fulton W.: Algebraic topology.Graduate Texts in Mathematics, Springer-Verlag, 1995. Zbl 0852.55001, MR 1343250 | 
| Reference:
             | 
[16] Fulton W., Harris J.: Representation theory.Graduate texts in Mathematics 129, Springer-Verlag, 1991. Zbl 0744.22001, MR 1153249 | 
| Reference:
             | 
[17] Jakobsen H.P.: Conformal invariants.Publ. RIMS, Kyoto Univ. 22 (1986), 345-361. MR 0849262 | 
| Reference:
             | 
[18] Jakobsen H.P., Vergne M.: Wave and Dirac operators and representations of conformal group.J. Funct. Anal. 24 (1977), 52-106. MR 0439995 | 
| Reference:
             | 
[19] Knapp A.: Lie Groups - Beyond an Introduction.Birkhäuser, 1996. Zbl 1075.22501, MR 1399083 | 
| Reference:
             | 
[20] Knapp A.: Representation theory of semisimple groups, an overview based on examples.Princeton Mathematical Series 36, 1985. Zbl 0993.22001, MR 0855239 | 
| Reference:
             | 
[21] Slovák J.: Natural operators on conformal manifolds.Dissertation Thesis, Brno, 1993. MR 1255551 | 
| Reference:
             | 
[22] Souček V.: Conformal invariance of higher spin equations.in Proc. of Symp. `Analytical and Numerical Methods in Clifford Analysis', Lecture in Seifen, 1996. | 
| Reference:
             | 
[23] Souček V.: Monogenic forms and the BGG resolution.preprint, Prague, 1998. MR 1845957 | 
| Reference:
             | 
[24] Varadarajan V.S.: Harmonic Analysis on Semisimple Lie Groups.Cambridge University Press, 1986. Zbl 0924.22014 | 
| Reference:
             | 
[25] Verma D.N.: Structure of certain induced representations of complex semisimple Lie algebras.Bull. Amer. Math. Soc. 74 (1968), 160-166. Zbl 0157.07604, MR 0218417 | 
| Reference:
             | 
[26] Wünsch V.: On conformally invariant differential operators.Math. Nachr. 129 (1986), 269-281. MR 0864639 | 
| . |