Previous |  Up |  Next

Article

Keywords:
Moscow space; Dieudonné completion; Hewitt-Nachbin completion; $C$-em\-bed\-ding; $G_\delta $-dense set; topological group; Souslin number; tightness; canonical open set
Summary:
We show that there exists an Abelian topological group $G$ such that the operations in $G$ cannot be extended to the Dieudonné completion $\mu G$ of the space $G$ in such a way that $G$ becomes a topological subgroup of the topological group $\mu G$. This provides a complete answer to a question of V.G. Pestov and M.G. Tkačenko, dating back to 1985. We also identify new large classes of topological groups for which such an extension is possible. The technique developed also allows to find many new solutions to the equation $\upsilon X\times \upsilon Y=\upsilon (X\times Y)$. The key role in the approach belongs to the notion of Moscow space which turns out to be very useful in the theory of $C$-embeddings and interacts especially well with homogeneity.
References:
[1] Arhangel'skii A.V.: Functional tightness, $Q$-spaces, and $\tau $-embeddings. Comment. Math. Univ. Carolinae 24:1 ((1983)), 105-120. MR 0703930
[2] Arhangel'skii A.V.: On a Theorem of W.W. Comfort and K.A. Ross. Comment. Math. Univ. Carolinae 40:1 (1999), 133-151. MR 1715207
[3] Arhangel'skii A.V.: Topological groups and $C$-embeddings. submitted, 1999. Zbl 0984.54018
[4] Blair R.L.: Spaces in which special sets are $z$-embedded. Canad. J. Math. 28:4 (1976), 673-690. MR 0420542 | Zbl 0359.54009
[5] Blair R.L., Hager A.W.: Notes on the Hewitt realcompactification of a product. Gen. Topol. and Appl. 5 (1975), 1-8. MR 0365496 | Zbl 0323.54021
[6] Comfort W.W.: On the Hewitt realcompactification of the product space. Trans. Amer. Math. Soc. 131 (1968), 107-118. MR 0222846
[7] Comfort W.W., Negrepontis S.: Extending continuous functions on $X\times Y$ to subsets of $\beta X\times \beta Y$. Fund. Math. 59 (1966), 1-12. MR 0200896 | Zbl 0185.26304
[8] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups. Pacific J. Math. 16:3 (1966), 483-496. MR 0207886 | Zbl 0214.28502
[9] Engelking R.: General Topology. PWN, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[10] Frolík Z.: The topological product of two pseudocompact spaces. Czechoslovak Math. J. 10 (1960), 339-349. MR 0116304
[11] Gillman L., Jerison M.: Rings of Continuous Functions. Princeton, 1960. MR 0116199 | Zbl 0327.46040
[12] Glicksberg I.: Stone-Čech compactifications of products. Trans. Amer. Math. Soc. 90 (1959), 369-382. MR 0105667 | Zbl 0089.38702
[13] Hewitt E.: Rings of real-valued continuous functions 1. Trans. Amer. Math. Soc. 64 ((1948)), 45-99. MR 0026239
[14] Hušek M.: Realcompactness of function spaces and $\upsilon (P\times Q)$. Gen. Topol. and Appl. 2 (1972), 165-179. MR 0307181
[15] Pestov V.G., Tkačenko M.G.: Problem $3.28$. in: Unsolved Problems of Topological Algebra, Academy of Science, Moldova, Kishinev, "Shtiinca" 1985, p.18.
[16] Roelke W., Dierolf S.: Uniform Structures on Topological Groups and Their Quotients. McGraw-Hill, New York, 1981.
[17] Stchepin E.V.: On $\kappa $-metrizable spaces. Izv. Akad. Nauk SSSR, Ser. Matem. 43:2 (1979), 442-478. MR 0534603
[18] Terada T.: Note on $z$-, $C^\ast $-, and $C$-embedded subspaces of products. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 13 (1975), 129-132. MR 0391005 | Zbl 0333.54008
[19] Tkačenko M.G.: The notion of $o$-tightness and $C$-embedded subspaces of products. Topology Appl. 15 (1983), 93-98. MR 0676970
[20] Tkačenko M.G.: Subgroups, quotient groups, and products of $R$-factorizable groups. Topology Proc. 16 (1991), 201-231. MR 1206464
[21] Tkačenko M.G.: Introduction to Topological Groups. Topology Appl. 86:3 (1998), 179-231. MR 1623960
[22] Uspenskij V.V.: Topological groups and Dugundji spaces. Matem. Sb. 180:8 (1989), 1092-1118. MR 1019483
Partner of
EuDML logo