| Title:
             | 
The Banach contraction mapping principle and cohomology (English) | 
| Author:
             | 
Janoš, Ludvík | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
41 | 
| Issue:
             | 
3 | 
| Year:
             | 
2000 | 
| Pages:
             | 
605-610 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
By a dynamical system $(X,T)$ we mean the action of the semigroup $(\Bbb Z^+,+)$ on a metrizable topological space $X$ induced by a continuous selfmap $T:X\rightarrow X$. Let $M(X)$ denote the set of all compatible metrics on the space $X$. Our main objective is to show that a selfmap $T$ of a compact space $X$ is a Banach contraction relative to some $d_1\in M(X)$ if and only if there exists some $d_2\in M(X)$ which, regarded as a $1$-cocycle of the system $(X,T)\times (X,T)$, is a coboundary. (English) | 
| Keyword:
             | 
$B$-system | 
| Keyword:
             | 
$E$-system | 
| MSC:
             | 
37B25 | 
| MSC:
             | 
37B99 | 
| MSC:
             | 
47H10 | 
| MSC:
             | 
54H15 | 
| MSC:
             | 
54H20 | 
| MSC:
             | 
54H25 | 
| idZBL:
             | 
Zbl 1087.37502 | 
| idMR:
             | 
MR1795089 | 
| . | 
| Date available:
             | 
2009-01-08T19:05:33Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/119193 | 
| . | 
| Reference:
             | 
[1] Edelstein M.: On fixed and periodic points under contractive mappings.J. London Math. Soc. 37 (1962), 74-79. Zbl 0113.16503, MR 0133102 | 
| Reference:
             | 
[2] Huissi M.: Sur les solutions globales de l'equation des cocycles.Aequationes Math. 45 (1993), 195-206. MR 1212385 | 
| Reference:
             | 
[3] Iwanik A.: Ergodicity for piecewise smooth cocycles over toral rotations.Fund. Math. 157 (1998), 235-244. MR 1636890 | 
| Reference:
             | 
[4] Janoš L.: A converse of Banach's contraction theorem.Proc. Amer. Math. Soc. 18 (1967), 287-289. Zbl 0148.43001, MR 0208589 | 
| Reference:
             | 
[5] Janoš L., Ko H.M., Tau K.K.: Edelstein's contractivity and attractors.Proc. Amer. Math. Soc. 76 (1979), 339-344. MR 0537101 | 
| Reference:
             | 
[6] Meyers P.R.: A converse to Banach's contraction theorem.J. Res. Nat. Bureau of Standard 71B (1967), 73-76. Zbl 0161.19803, MR 0221469 | 
| Reference:
             | 
[7] Moore C., Schmidt K.: Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson.Proc. London Math. Soc. 40 (1980), 443-475. MR 0572015 | 
| Reference:
             | 
[8] Nussbaum R.: Some asymptotic fixed point theorem.Trans. Amer. Math. Soc. 171 (1972), 349-375. MR 0310719 | 
| Reference:
             | 
[9] Opoitsev V.J.: A converse to the principle of contracting maps.Russian Math. Surveys 31 (1976), 175-204. Zbl 0351.54025 | 
| Reference:
             | 
[10] Parry W., Tuncel S.: Classification Problems in Ergodic Theory.London Math. Soc. Lecture Note Series 67, Cambridge University Press, Cambridge, 1982. Zbl 0487.28014, MR 0666871 | 
| Reference:
             | 
[11] Rus I.A.: Weakly Picard mappings.Comment. Math. Univ. Carolinae 34 (1993), 769-773. Zbl 0787.54045, MR 1263804 | 
| Reference:
             | 
[12] Volný D.: Coboundaries over irrational rotations.Studia Math. 126 (1997), 253-271. MR 1475922 | 
| . |