| Title: | The property ($\beta $) of Orlicz-Bochner sequence spaces (English) | 
| Author: | Kolwicz, Paweł | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 42 | 
| Issue: | 1 | 
| Year: | 2001 | 
| Pages: | 119-132 | 
| . | 
| Category: | math | 
| . | 
| Summary: | A characterization of property $(\beta )$ of an arbitrary Banach space is given. Next it is proved that the Orlicz-Bochner sequence space $l_\Phi (X)$ has the property $(\beta )$ if and only if both spaces $l_\Phi $ and $X$ have it also. In particular the Lebesgue-Bochner sequence space $l_p(X)$ has the property $(\beta )$ iff $X$ has the property $(\beta )$. As a corollary we also obtain a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped with the Luxemburg norm the property $(\beta )$, nearly uniform convexity, the drop property and reflexivity are in pairs equivalent. (English) | 
| Keyword: | Orlicz-Bochner space | 
| Keyword: | property $(\beta )$ | 
| Keyword: | Orlicz space | 
| MSC: | 46B20 | 
| MSC: | 46B45 | 
| MSC: | 46E30 | 
| MSC: | 46E40 | 
| idZBL: | Zbl 1056.46020 | 
| idMR: | MR1825377 | 
| . | 
| Date available: | 2009-01-08T19:08:46Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119228 | 
| . | 
| Reference: | [1] Alherk G., Hudzik H.: Uniformly non-$l_n^{(1)}$ Musielak-Orlicz spaces of Bochner type.Forum Math. 1 (1989), 403-410. MR 1016681 | 
| Reference: | [2] Cerda J., Hudzik H., Mastyło M.: Geometric properties of Köthe Bochner spaces.Math. Proc. Cambridge Philos. Soc. 120 (1996), 521-533. MR 1388204 | 
| Reference: | [3] Chen S., Hudzik H.: On some convexities of Orlicz and Orlicz-Bochner spaces.Comment. Math. Univ. Carolinae 29.1 (1988), 13-29. Zbl 0647.46030, MR 0937545 | 
| Reference: | [4] Clarkson J.A.: Uniformly convex spaces.Trans. Amer. Math. Soc. 40 (1936), 396-414. Zbl 0015.35604, MR 1501880 | 
| Reference: | [5] Cui Y., Płuciennik R., Wang T.: On property $(\beta)$ in Orlicz spaces.Arch. Math. 69 (1997), 57-69. Zbl 0894.46023, MR 1452160 | 
| Reference: | [6] Greim P.: Strongly exposed points in Bochner $L^p$ spaces.Proc. Amer. Math. Soc. 88 (1983), 81-84. MR 0691281 | 
| Reference: | [7] Hudzik H.: Uniformly non-$l_n^{(1)}$ Orlicz spaces with Luxemburg norm.Studia Math. 81.3 (1985), 271-284. MR 0808569 | 
| Reference: | [8] Hudzik H., Landes T.: Characteristic of convexity of Köthe function spaces.Math. Ann. 294 (1992), 117-124. Zbl 0761.46016, MR 1180454 | 
| Reference: | [9] Huff R.: Banach spaces which are nearly uniformly convex.Rocky Mountain J. Math. 10 (1980), 743-749. Zbl 0505.46011, MR 0595102 | 
| Reference: | [10] Kamińska A.: Uniform rotundity of Musielak-Orlicz sequence spaces.J. Approx. Theory 47 (1986), 302-322. MR 0862227 | 
| Reference: | [11] Kamińska A.: Rotundity of Orlicz-Musielak sequence spaces.Bull. Acad. Polon. Sci. Math. 29 3-4 (1981), 137-144. MR 0638755 | 
| Reference: | [12] Kolwicz P.: On property $(\beta)$ in Banach lattices, Calderón-Lozanowskiĭ and Orlicz-Lorentz spaces.submitted. Zbl 0993.46009 | 
| Reference: | [13] Kolwicz P., Płuciennik R.: P-convexity of Bochner-Orlicz spaces.Proc. Amer. Math. Soc. 126.8 (1998), 2315-2322. MR 1443391 | 
| Reference: | [14] Kutzarowa D.N.: An isomorphic characterization of property $(\beta)$ of Rolewicz.Note Mat. 10.2 (1990), 347-354. MR 1204212 | 
| Reference: | [15] Kutzarowa D.N., Maluta E., Prus S.: Property $(\beta)$ implies normal structure of the dual space.Rend. Circ. Math. Palermo 41 (1992), 335-368. MR 1230583 | 
| Reference: | [16] Lin P.K.: Köthe Bochner Function Spaces.to appear. Zbl 1054.46003, MR 2018062 | 
| Reference: | [17] Montesinos V.: Drop property equals reflexivity.Studia Math. 87 (1987), 93-100. Zbl 0652.46009, MR 0924764 | 
| Reference: | [18] Płuciennik R.: On characterization of strongly extreme points in Köthe Bochner spaces.Rocky Mountain J. Math. 27.1 (1997), 307-315. MR 1453105 | 
| Reference: | [19] Płuciennik R.: Points of local uniform rotundity in Köthe Bochner spaces.Arch. Math. 70 (1998), 479-485. MR 1621994 | 
| Reference: | [20] Rolewicz S.: On drop property.Studia Math. 85 (1987), 27-35. MR 0879413 | 
| Reference: | [21] Rolewicz S.: On $\Delta $-uniform convexity and drop property.Studia Math. 87 (1987), 181-191. Zbl 0652.46010, MR 0928575 | 
| . |