[1] Alexiewicz A., Orlicz W.: 
Some remarks on the existence and uniqueness of solutions of the hyperbolic equation. Studia Math. 15 156-160 (1956). 
MR 0079711 | 
Zbl 0070.09204[2] Ball J.M.: 
Weak continuity properties of mappings and semi-groups. Proc. Royal Soc. Edinbourgh Sect.A 72 275-280 (1979). 
MR 0397495[3] DeBlasi F.: 
On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 259-262 (1977). 
MR 0482402[4] DeBlasi F., Myjak J.: 
On the structure of the set of solutions of the Darboux problem for hyperbolic equations. Proc. Edinbourgh Math. Soc. Ser.2 29 17-23 (1986). 
MR 0829175[5] Bugajewski D., Szufla S.: 
Kneser's theorem for weak solutions of the Darboux problem in Banach spaces. Nonlinear Analysis T.M.A. 20 169-173 (1993). 
MR 1200387 | 
Zbl 0776.34048[6] Cichoń M.: 
Weak solutions of differential equations in Banach spaces. Disc. Math. Differential Inclusions 15 5-14 (1995). 
MR 1344523[7] Cichoń M., Kubiaczyk I.: 
On the set of solutions of the Cauchy problem in Banach spaces. Arch. Math. 63 251-257 (1994). 
MR 1287254[8] Cichoń M., Kubiaczyk I.: 
Kneser's theorems for strong, weak and pseudo-solutions of ordinary differential equations in Banach spaces. Annales Polon. Math. 62 13-21 (1995). 
MR 1348215 | 
Zbl 0836.34062[9] Dawidowski M., Kubiaczyk I.: 
On bounded solutions of hyperbolic differential inclusion in Banach spaces. Demonstratio Math. 25 153-159 (1992). 
MR 1170678 | 
Zbl 0780.35120[10] Dragoni R., Macki J.W., Nistri P., Zecca P.: 
Solution Sets of Differential Equations in Abstract Spaces. Pitman Research Notes in Mathematics Series 342, Longman, 1996. 
MR 1427944 | 
Zbl 0847.34004[11] van Dulst D.: 
Characterizations of Banach Spaces Not Containing $l^1$. CWI Tract, Amsterdam, 1989. 
MR 1002733[13] Górniewicz L., Pruszko T.: 
On the set of solutions of the Darboux problem for some hyperbolic equations. Bull. Acad. Polon. Sci. Math. 28 279-286 (1980). 
MR 0620202[14] Górniewicz L., Bryszewski J., Pruszko T.: 
An application of the topological degree theory to the study of the Darboux problem for hyperbolic equations. J. Math. Anal. Appl. 76 107-115 (1980). 
MR 0586649[15] Knight W.J.: 
Solutions of differential equations in B-spaces. Duke Math. J. 41 437-442 (1974). 
MR 0344624 | 
Zbl 0288.34063[16] Kubiaczyk I.: 
On a fixed point theorem for weakly sequentially continuous mapping. Disc. Math. Differential Inclusions 15 15-20 (1995). 
MR 1344524[17] Michalak A.: 
On the Fubini theorem for the Pettis integral for bounded functions. Bull. Polish Sci. Math. 49 (1) (2001), in press. 
MR 1824153 | 
Zbl 0995.46026[18] Mitchell A.R., Smith Ch.: 
An existence theorem for weak solutions of differential equations in Banach spaces. in Nonlinear Equations in Abstract Spaces, ed. by V. Laksmikantham, 1978, pp.387-404. 
MR 0502554 | 
Zbl 0452.34054[19] Negrini P.: Sul problema di Darboux negli spazi di Banach. Boll. U.M.I. (5) 17-A 201-215 (1956).
[20] O'Regan D.: Fixed point theory for weakly sequentially continuous mappings. to appear.
[21] Pettis B.J.: 
On integration in vector spaces. Trans. Amer. Math. Soc. 44 277-304 (1938). 
MR 1501970 | 
Zbl 0019.41603[22] Szep A.: Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci. Math. 26 407-413 (1978).