| Title: | Relative exact covers (English) | 
| Author: | Bican, Ladislav | 
| Author: | Torrecillas, Blas | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 42 | 
| Issue: | 4 | 
| Year: | 2001 | 
| Pages: | 601-607 | 
| . | 
| Category: | math | 
| . | 
| Summary: | Recently Rim and Teply [11] found a necessary condition for the existence of $\sigma$-torsionfree covers with respect to a given hereditary torsion theory for the category $R$-mod. This condition uses the class of $\sigma$-exact modules; i.e. the $\sigma$-torsionfree modules for which every its $\sigma$-torsionfree homomorphic image is $\sigma$-injective. In this note we shall show that the existence of $\sigma$-torsionfree covers implies the existence of $\sigma$-exact covers, and we shall investigate some sufficient conditions for the converse. (English) | 
| Keyword: | precover | 
| Keyword: | cover | 
| Keyword: | hereditary torsion theory $\sigma $ | 
| Keyword: | $\sigma $-injective module | 
| Keyword: | $\sigma $-exact module | 
| Keyword: | $\sigma $-pure submodule | 
| MSC: | 16D50 | 
| MSC: | 16D90 | 
| MSC: | 16S90 | 
| MSC: | 18E40 | 
| idZBL: | Zbl 1068.16039 | 
| idMR: | MR1883369 | 
| . | 
| Date available: | 2009-01-08T19:16:43Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119276 | 
| . | 
| Reference: | [1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules.Graduate Texts in Mathematics, vol.13 Springer-Verlag (1974). Zbl 0301.16001, MR 0417223 | 
| Reference: | [2] Bican L., El Bashir R., Enochs E.: All modules have flat covers.Bull. London Math. Soc. 33 (2001), 385-390. Zbl 1029.16002, MR 1832549 | 
| Reference: | [3] Bican L., Kepka T., Němec P.: Rings, Modules, and Preradicals.Marcel Dekker New York (1982). MR 0655412 | 
| Reference: | [4] Bican L., Torrecillas B.: On covers.J. Algebra 236 (2001), 645-650. Zbl 0973.16002, MR 1813494 | 
| Reference: | [5] Bican L., Torrecillas B.: Precovers.to appear. Zbl 1016.16003, MR 1962008 | 
| Reference: | [6] Bican L., Torrecillas B.: On the existence of relative injective covers.to appear. Zbl 1006.16006, MR 1905180 | 
| Reference: | [7] Enochs E.: Injective and flat covers, envelopes and resolvents.Israel J. Math. 39 (1981), 189-209. Zbl 0464.16019, MR 0636889 | 
| Reference: | [8] García Rozas J.R., Torrecillas B.: On the existence of covers by injective modules relative to a torsion theory.Comm. Algebra 24 (1996), 1737-1748. MR 1386494 | 
| Reference: | [9] Golan J.: Torsion Theories.Pitman Monographs and Surveys in Pure an Applied Mathematics, 29 Longman Scientific and Technical (1986). Zbl 0657.16017, MR 0880019 | 
| Reference: | [10] Rada J., Saorín M.: Rings characterized by (pre)envelopes and (pre)covers of their modules.Comm. Algebra 26 (1998), 899-912. Zbl 0908.16003, MR 1606190 | 
| Reference: | [11] Rim S.H., Teply M.L.: On coverings of modules.to appear. Zbl 0985.16017, MR 1791327 | 
| Reference: | [12] Teply M.: Torsion-free covers II.Israel J. Math. 23 (1976), 132-136. Zbl 0321.16014, MR 0417245 | 
| Reference: | [13] Torrecillas B.: T-torsionfree T-injective covers.Comm. Algebra 12 (1984), 2707-2726. MR 0757788 | 
| Reference: | [14] Xu J.: Flat covers of modules.Lecture Notes in Mathematics, 1634, Springer Verlag Berlin-Heidelberg-New York (1996). Zbl 0860.16002, MR 1438789 | 
| . |