Article
Keywords:
extremally disconnected and maximal spaces; semitopological group; Stone-Čech compactification
Summary:
Answering recent question of A.V. Arhangel'skii we construct in ZFC an extremally disconnected semitopological group with continuous inverse having no open Abelian subgroups.
References:
                        
[1] Arhangel'skii A.V.: 
On topological and algebraic properties of extremally disconnected semitopological groups. Comment. Math. Univ. Carolinae 42.4 (2000), 803-810. 
MR 1800164[2] Arhangel'skii A.V.: 
Groups topologiques extremalement discontinus. C.R. Acad. Sci. Paris 265 (1967), 822-825. 
MR 0222207[3] Hindman N., Strauss D.: 
Algebra in the Stone-Čech Compactification: Theory and Applications. Walter de Gruyter, Berlin, 1998. 
MR 1642231 | 
Zbl 0918.22001[4] Protasov I.V.: 
Filters and topologies on semigroups (in Russian). Mat. Stud. 3 (1994), 15-28. 
MR 1692845[6] Protasov I.V.: 
On maximal topologies on groups. Visn. Kyiv. Univ. Ser. Fiz-mat. nauk, no. 3 (1998), 251-253. 
MR 1672661[7] Protasov I.V.: 
Indecomposable topologies on groups. Ukrainian Math. J. 50 (1998), 1879-1887. 
MR 1721072[9] Zelenyuk E.G.: 
Extremal ultrafilters and topologies on groups (in Russian). Mat. Stud. 14 (2000), 121-140. 
MR 1813995