| Title: | Annihilators and deductive systems in commutative Hilbert algebras (English) | 
| Author: | Chajda, I. | 
| Author: | Halaš, R. | 
| Author: | Jun, Y. B. | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 43 | 
| Issue: | 3 | 
| Year: | 2002 | 
| Pages: | 407-417 | 
| . | 
| Category: | math | 
| . | 
| Summary: | The properties of deductive systems in Hilbert algebras are treated. If a Hilbert algebra $H$ considered as an ordered set is an upper semilattice then prime deductive systems coincide with meet-irreducible elements of the lattice $\operatorname{Ded} H$ of all deductive systems on $H$ and every maximal deductive system is prime. Complements and relative complements of $\operatorname{Ded} H$ are characterized as the so called annihilators in $H$. (English) | 
| Keyword: | (commutative) Hilbert algebra | 
| Keyword: | deductive system (generated by a set) | 
| Keyword: | annihilator | 
| MSC: | 03B22 | 
| MSC: | 03G10 | 
| MSC: | 03G25 | 
| MSC: | 06A11 | 
| idZBL: | Zbl 1070.03043 | 
| idMR: | MR1920517 | 
| . | 
| Date available: | 2009-01-08T19:23:20Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119331 | 
| . | 
| Reference: | [1] Balbes R., Dwinger P.: Distributive Lattices.University of Missouri Press, 1974. Zbl 0321.06012, MR 0373985 | 
| Reference: | [2] Busneag D.: A note on deductive systems of a Hilbert algebra.Kobe J. Math. 2 (1985), 29-35. Zbl 0584.06005, MR 0811800 | 
| Reference: | [3] Busneag D.: Hilbert algebras of fractions and maximal Hilbert algebras of quotients.Kobe J. Math. 5 (1988), 161-172. Zbl 0676.06018, MR 0990817 | 
| Reference: | [4] Busneag D.: Hertz algebras of fractions and maximal Hertz algebras of quotients.Math. Japon. 39 (1993), 461-469. MR 1278859 | 
| Reference: | [5] Chajda I.: The lattice of deductive systems on Hilbert algebras.Southeast Asian Bull. Math., to appear. Zbl 1010.03054, MR 2046584 | 
| Reference: | [6] Chajda I., Halaš R.: Congruences and ideals in Hilbert algebras.Kyungpook Math. J. 39 (1999), 429-432. MR 1728116 | 
| Reference: | [7] Chajda I., Halaš R.: Stabilizers of Hilbert algebras.Multiple Valued Logic, to appear. | 
| Reference: | [8] Chajda I., Halaš R., Zednik J.: Filters and annihilators in implication algebras.Acta Univ. Palack. Olomuc, Fac. Rerum Natur. Math. 37 (1998), 141-145. MR 1690472 | 
| Reference: | [9] Diego A.: Sur les algébras de Hilbert.Ed. Hermann, Colléction de Logique Math. Serie A 21 (1966), 1-52. | 
| Reference: | [10] Hong S.M., Jun Y.B.: On a special class of Hilbert algebras.Algebra Colloq. 3:3 (1996), 285-288. Zbl 0857.03040, MR 1412660 | 
| Reference: | [11] Hong S.M., Jun Y.B.: On deductive systems of Hilbert algebras.Comm. Korean Math. Soc. 11:3 (1996), 595-600. Zbl 0946.03079, MR 1432264 | 
| Reference: | [12] Jun Y.B.: Deductive systems of Hilbert algebras.Math. Japon. 43 (1996), 51-54. Zbl 0946.03079, MR 1373981 | 
| Reference: | [13] Jun Y.B.: Commutative Hilbert algebras.Soochow J. Math. 22:4 (1996), 477-484. Zbl 0864.03042, MR 1426553 | 
| Reference: | [14] Jun Y.B., Nam J.W., Hong S.M.: A note on Hilbert algebras.Pusan Kyongnam Math. J. (presently, East Asian Math. J.) 10 (1994), 279-285. | 
| . |