Previous |  Up |  Next


Title: On a parabolic problem with nonlinear Newton boundary conditions (English)
Author: Feistauer, Miloslav
Author: Najzar, Karel
Author: Švadlenka, Karel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 3
Year: 2002
Pages: 429-455
Category: math
Summary: The paper is concerned with the study of a parabolic initial-boundary value problem with nonlinear Newton boundary condition considered in a two-dimensional domain. The goal is to prove the existence and uniqueness of a weak solution to the problem in the case when the nonlinearity in the Newton boundary condition does not satisfy any monotonicity condition and to analyze the finite element approximation. (English)
Keyword: parabolic convection-diffusion equation
Keyword: nonlinear Newton boundary condition
Keyword: Galerkin method
Keyword: compactness method
Keyword: finite element approximation
Keyword: error estimates
MSC: 35A35
MSC: 35D05
MSC: 35K57
MSC: 35K60
MSC: 65M60
MSC: 65N15
MSC: 65N30
idZBL: Zbl 1090.35102
idMR: MR1920519
Date available: 2009-01-08T19:23:34Z
Last updated: 2012-04-30
Stable URL:
Reference: [1] Barber S.A.: Soil Nutrient Bioavailability: A Mechanistic Approach.John Wiley & Sons, Inc., New York, 1995.
Reference: [2] Bialecki R., Nowak A.J.: Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions.Appl. Math. Model. 5 (1981), 417-421. Zbl 0475.65078
Reference: [3] Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods.Springer, New York, 1994. Zbl 1135.65042, MR 1278258
Reference: [4] Chow S.S.: Finite element error estimates for nonlinear elliptic equations of monotone type.Numer. Math. 54 (1989), 373-393. MR 0972416
Reference: [5] Ciarlet P.G.: The Finite Element Method for Elliptic Problems.North Holland, Amsterdam, 1978. Zbl 0547.65072, MR 0520174
Reference: [6] Ciarlet P.G., Raviart P.A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations (A.K. Aziz, Ed.), Academic Press, New York, 1972. MR 0421108
Reference: [7] Claassen N., Barber S.A.: Simulation model for nutrient uptake from soil by a growing plant root system.Agronomy Journal 68 (1976), 961-964.
Reference: [8] Cwikel M.: Real and complex interpolation and extrapolation of compact operators.Duke Math. J. 65.2 (1992), 333-343. Zbl 0787.46062, MR 1150590
Reference: [9] Dolejší V., Feistauer M., Schwab C.: A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems.preprint, Forschungsinstitut für Mathematik, ETH Zürich, January 2001 (to appear in Calcolo). MR 1901200
Reference: [10] Feistauer M.: Mathematical Methods in Fluid Mechanics.The Pitman Monographs and Surveys in Pure and Applied Mathematics 67, Longman Scientific and Technical Series, Harlow, 1993. MR 1266627
Reference: [11] Feistauer M., Kalis H., Rokyta M.: Mathematical modelling of an electrolysis process.Comment Math. Univ. Carolinae 30 (1989), 465-477. Zbl 0704.35021, MR 1031864
Reference: [12] Feistauer M., Najzar K.: Finite element approximation of a problem with a nonlinear Newton boundary condition.Numer. Math. 78 (1998), 403-425. Zbl 0888.65118, MR 1603350
Reference: [13] Feistauer M., Najzar K., Sobotíková V.: Error estimates for the finite element solution of elliptic problems with nonlinear Newton boundary conditions.Numer. Funct. Anal. Optim. 20 (1999), 835-851. MR 1728186
Reference: [14] Feistauer M., Najzar K., Sobotíková V.: On the finite element analysis of problems with nonlinear Newton boundary conditions in nonpolygonal domains.Appl. Math. 46 (2001), 353-382. Zbl 1066.65124, MR 1925193
Reference: [15] Feistauer M., Najzar K., Sobotíková V., Sváček P.: Numerical analysis of problems with nonlinear Newton boundary Proc. of the 3rd European Conference Numerical Mathematics and Advanced Applications (P. Neittaanmäki, T. Tiihonen, P. Tarvainen, Editors), World Scientific, Singapore, 2000, pp.486-493.
Reference: [16] Feistauer M., Sobotíková V.: Finite element approximation of nonlinear elliptic problems with discontinuous coefficients.M$^{2}$AN 24 (1990), 457-500. MR 1070966
Reference: [17] Feistauer M., Ženíšek A.: Finite element solution of nonlinear elliptic problems.Numer. Math. 50 (1987), 451-475. MR 0875168
Reference: [18] Ganesh M., Graham I.G., Sivaloganathan J.: A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity.SIAM J. Numer. Anal. 31 (1994), 1378-1414. Zbl 0815.41008, MR 1293521
Reference: [19] Ganesh M., Steinbach O.: Boundary element methods for potential problems with nonlinear boundary conditions.Applied Mathematics Report AMR98/17, School of Mathematics, The University of New South Wales, Sydney, 1998. Zbl 0971.65107
Reference: [20] Ganesh M., Steinbach O.: Nonlinear boundary integral equations for harmonic problems.Applied Mathematics Report AMR98/20, School of Mathematics, The University of New South Wales, Sydney, 1998. Zbl 0974.65112, MR 1738277
Reference: [21] Girault V., Raviart P.A.: Finite Element Approximation of the Navier-Stokes Equations.Lecture Notes in Mathematics 749, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl 0441.65081, MR 0548867
Reference: [22] Křížek M., Liu L., Neittaanmäki P.: Finite element analysis of a nonlinear elliptic problem with a pure radiation Applied Nonlinear Analysis, Kluwer, Amsterdam, 1999, pp.271-280. MR 1727454
Reference: [23] Kufner A., John O., Fučík S.: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [24] Kurzweil J.: Ordinary Differential Equations.Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986. Zbl 0756.34003, MR 0929466
Reference: [25] Lions J.L.: Quelques méthodes de résolution des problémes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0248.35001, MR 0259693
Reference: [26] Lions J.L., Magenes E.: Problémes aux limites non homogénes et applications.Dunod, Paris, 1968. Zbl 0212.43801
Reference: [27] Liu L., Křížek M.: Finite element analysis of a radiation heat transfer problem.J. Comput. Math. 16 (1998), 327-336.
Reference: [28] Málek J., Nečas J., Rokyta M., Růžička M.: Weak and Measure-Valued Solutions to Evolutionary PDEs.Chapman & Hall, London, 1996. MR 1409366
Reference: [29] Moreau R., Ewans J.W.: An analysis of the hydrodynamics of aluminium reduction cells.J. Electrochem. Soc. 31 (1984), 2251-2259.
Reference: [30] Nečas J.: Les méthodes directes en théories des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [31] Sváček P.: Higher order finite element method for a problem with nonlinear boundary Proc. of the 13th Summer School ``Software and Algorithms of Numerical Mathematics'', West Bohemian University Pilsen, 1999, pp.301-308.
Reference: [32] Temam R.: Navier-Stokes Equations.North-Holland, Amsterdam-New York-Oxford, 1977. Zbl 1157.35333, MR 0603444
Reference: [33] Ženíšek A.: Nonhomogeneous boundary conditions and curved triangular finite elements.Appl. Math. 26 (1981), 121-141. MR 0612669
Reference: [34] Ženíšek A.: The finite element method for nonlinear elliptic equations with discontinuous coefficients.Numer. Math. 58 (1990), 51-77. MR 1069653
Reference: [35] Zlámal M.: Curved elements in the finite element method.I. SIAM J. Numer. Anal. 10 (1973), 229-240. MR 0395263


Files Size Format View
CommentatMathUnivCarolRetro_43-2002-3_4.pdf 323.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo